Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Симплекс метод





 

Симплекс метод - метод линейного программирования, который реализует рациональный перебор базисных допустимых решений, в виде конечного итеративного процесса, необходимо улучшающего значение целевой функции на каждом шаге.

Применение симплекс-метода для задачи линейного программирования предполагает предварительное приведение ее формальной постановки к канонической форме с n неотрицательными переменными: (X1,..., Xn), где требуется минимизация линейной целевой функции при m линейных ограничениях типа равенств. Среди переменных задачи выбирается начальный базис из m переменных, для определенности (X1,..., Xm), которые должны иметь неотрицательные значения, когда остальные (n-m) свободные переменные равны 0. Целевая функция и ограничения равенства преобразуются к диагональной форме относительно базисных переменных, переменных, где каждая базисная переменная входит только в одно уравнение с коэффициентом 1.

Данная формальная модель задачи линейного программирования обычно задается в форме, так называемой симплекс-таблицы, удобной для выполнения операций симплекс-метода:

Симплекс-метод является основным в линейном программировании. Решение задачи начинается с рассмотрений одной из вершин многогранника условий. Если исследуемая вершина не соответствует максимуму (минимуму), то переходят к соседней, увеличивая значение функции цели при решении задачи на максимум и уменьшая при решении задачи на минимум. Таким образом, переход от одной вершины к другой улучшает значение функции цели. Так как число вершин многогранника ограничено, то за конечное число шагов гарантируется нахождение оптимального значения или установление того факта, что задача неразрешима.

Этот метод является универсальным, применимым к любой задаче линейного программирования в канонической форме. Система ограничений здесь - система линейных уравнений, в которой количество неизвестных больше количества уравнений. Если ранг системы равен r, то мы можем выбрать r неизвестных, которые выразим через остальные неизвестные. Для определенности предположим, что выбраны первые, идущие подряд, неизвестные X1, X2,…, Xr. Тогда наша система уравнений может быть записана как

 

 

К такому виду можно привести любую совместную систему, например, методом Гаусса. Правда, не всегда можно выражать через остальные первые r неизвестных (мы это сделали для определенности записи). Однако такие r неизвестных обязательно найдутся. Эти неизвестные (переменные) называются базисными, остальные свободными.

Придавая определенные значения свободным переменным и вычисляя значения базисных (выраженных через свободные), мы будем получать различные решения нашей системы ограничений. Таким образом, можно получить любое ее решение. Нас будут интересовать особые решения, получаемые в случае, когда свободные переменные равны нулю. Такие решения называются базисными, их столько же, сколько различных базисных видов у данной системы ограничений. Базисное решение называется допустимым базисным решением или опорным решением, если в нем значения переменных неотрицательны. Если в качестве базисных взяты переменные X1, X2,…, Xr, то решение {b1, b2,…, br, 0,…, 0} будет опорным при условии, что b1, b2,…, br ≥ 0.

Симплекс-метод основан на теореме, которая называется фундаментальной теоремой симплекс-метода. Среди оптимальных планов задачи линейного программирования в канонической форме обязательно есть опорное решение ее системы ограничений. Если оптимальный план задачи единственен, то он совпадает с некоторым опорным решением. Различных опорных решений системы ограничений конечное число. Поэтому решение задачи в канонической форме можно было бы искать перебором опорных решений и выбором среди них того, для которого значение F самое большое. Но, во-первых, все опорные решения неизвестны и их нужно находить, a, во-вторых, в реальных задачах этих решений очень много и прямой перебор вряд ли возможен. Симплекс-метод представляет собой некоторую процедуру направленного перебора опорных решений. Исходя из некоторого, найденного заранее опорного решения по определенному алгоритму симплекс-метода мы подсчитываем новое опорное решение, на котором значение целевой функции F не меньше, чем на старом. После ряда шагов мы приходим к опорному решению, которое является оптимальным планом.

 

Симплекс-таблица

    X1 X2 ... Xm Xm+1 ... Xn
X0 A0,0     ...   A0,m+1 ... A0,n
X1 A1,0     ...   A1,m+1 ... A1,n
X2 A2,0     ...   A2,m+1 ... A2,n
... ... ... ... ... ... ... ... ...
Xm Am,0     ...   Am,m+1 ... Am,n

 

Верхняя строка симплекс-таблицы представляет целевую функцию задачи. Каждая строка симплекс-таблицы, кроме первой, соответствует определенному ограничению-равенству задачи. Свободные члены ограничений составляют крайний левый столбец таблицы. Слева от таблицы записаны текущие базисные переменные (X1,..., Xm). Сверху от таблицы приведен набор всех переменных задачи, где Xm+1,..., Xn - свободные переменные задачи.

На начальном шаге алгоритма симплекс-метода должно быть выбрано базисное допустимое решение (X1,..., Xm) >= 0 при Xj = 0 (j = m+1,..., n), следовательно, все свободные члены ограничений Ai,0 >= 0 (i = 1,..., m). Когда это условие выполнено, симплекс-таблица называется прямо-допустимой, так как в этом случае базисные переменные, равные Ai,0, определяют допустимое решение прямой задачи линейного программирования. Если все коэффициенты целевой функции A0,j >= 0 (j = 1,..., m), то симплекс-таблица называется двойственно-допустимой, поскольку соответствующее решение является допустимым для двойственной задачи линейного программирования.

Если симплекс-таблица является одновременно прямо и двойственно допустимой, т.е. одновременно все Ai,0 >= 0 и A0,j >= 0, то решение оптимально.

Действительно, поскольку допустимыми являются лишь неотрицательные значения управляемых параметров, то изменение целевой функции за счет вариации свободных переменных, через которые она выражена, возможно только в сторону увеличения, т.e. будет ухудшаться. Если среди ее коэффициентов имеются A0,j < 0, то значение целевой функции еще можно уменьшить (т.e. улучшить), увеличивая значение любой свободной переменной Xj с отрицательным коэффициентом A0,j при побочном уменьшении базисных переменных, чтобы оставались справедливы ограничения задачи. Теоретически можно использовать любую свободную переменную Xj с A0,j < 0, но на практике обычно действуют в соответствии со стратегией наискорейшего спуска, выбирая минимальный элемент A0,p < 0 из всех отрицательных A0,j <&nbsp0:

 

A0,p = min A0,j < 0.j

 

Столбец p симплекс-таблицы, соответствующий выбранному коэффициенту A0,p < 0, называется ведущим столбцом. Свободная переменная ведущего столбца должна быть введена в базис вместо одной из текущих базисных переменных. Очевидно, из базиса следует исключить такую переменную Xq, которая раньше других обращается в нуль при увеличении переменной Xp ведущего столбца.

Её индекс легко определить, если среди положительных элементов ведущего столбца p найти элемент, минимизирующий отношение (Ai,0 / Ai,p):

Aq,0 Ai,0------ = min ------, i = 1,...,m.Aq,p i Ai,p

Элемент Aq,p называется ведущим элементом, cтрока q симплекс-таблицы, содержащая ведущий элемент, называется, соответственно, ведущей строкой. Переменная ведущей строки Xq заменяется в базисе переменной ведущего столбца Xp и становится свободной переменной с значением 0, в то время как новая базисная переменная Xp достигнет максимально возможного значения, равного: max Xp = (Aq,0 / Aq,p).

После указанного взаимообразного обмена переменными Xp и Xq между наборами свободных и базисных переменных нужно модифицировать исходную каноническую модель задачи путем приведения ее к диагональной форме относительно нового множества базисных переменных. Для указанного преобразования можно формально использовать процедуру исключения Гаусса, которая, как известно, состоит из двух элементарных операций, применяемых к системе алгебраических уравнений (в данном случае ограничений - равенств):

· умножение уравнения E1(X) = 0 на константу K1 и замена уравнения E1(X) = 0 уравнением K1*E1(X) = 0;

· сложение уравнений E1(X) = 0 и E2(X) = 0 c последующей заменой уравнения E2(X) = 0 уравнением E1(X) + E2(X) = 0.

Исключения Гаусса позволяют привести систему уравнений к диагональной форме относительно желаемого множества переменных. В данном случае исключение Гаусса применяется так, чтобы все элементы симплекс-таблицы в ведущем столбце, кроме ведущего элемента Aq,p, стали нулевыми, а ведущий элемент стал равным единице:

 

Ai,p = 0, если i не равно q

и

Ai,p = 1, если i = q.

 

Указанные шаги симплекс-метода повторяются, пока не будет получена симплекс-таблица, которая одновременно является прямо и двойственно допустимой. Если положит в такой симплекс-таблице текущие базисные переменные равными Ai,0, а свободные - нулю, то будет получено оптимальное решение.

Практика применения симплекс метода показала, что число итераций, требуемых для решения задачи линейного программирования обычно колеблется от 2m до 3m, хотя для некоторых специально построенных задач вычисления по правилам симплекс метода превращаются в прямой перебор базисных допустимых решений. Однако, трудные для симплекс метода задачи на практике встречаются крайне редко, что объясняет широкое распространение и большую популярность данного метода линейного программирования по сравнению с другими подходами.

 

2.1 ПРИМЕР РИШЕНИЯ ЛИНЕЙНОГО УРАВНЕНИЯ СИМПЛЕКС-МЕТОДОМ

 

К такому виду можно привести любую совместную систему, например, методом Гаусса. Правда, не всегда можно выражать через остальные первые r неизвестных (мы это сделали для определенности записи). Однако такие r неизвестных обязательно найдутся. Эти неизвестные (переменные) называются базисными, остальные свободными.

Придавая определенные значения свободным переменным и вычисляя значения базисных (выраженных через свободные), мы будем получать различные решения нашей системы ограничений. Таким образом, можно получить любое ее решение. Нас будут интересовать особые решения, получаемые в случае, когда свободные переменные равны нулю. Такие решения называются базисными, их столько же, сколько различных базисных видов у данной системы ограничений. Базисное решение называется допустимым базисным решением или опорным решением, если в нем значения переменных неотрицательны. Если в качестве базисных взяты переменные X1, X2,…, Xr, то решение {b1, b2,…, br, 0,…, 0} будет опорным при условии, что b1, b2,…, br ≥ 0.

Симплекс-метод основан на теореме, которая называется фундаментальной теоремой симплекс-метода. Среди оптимальных планов задачи линейного программирования в канонической форме обязательно есть опорное решение ее системы ограничений. Если оптимальный план задачи единственен, то он совпадает с некоторым опорным решением. Различных опорных решений системы ограничений конечное число. Поэтому решение задачи в канонической форме можно было бы искать перебором опорных решений и выбором среди них того, для которого значение F самое большое. Но, во-первых, все опорные решения неизвестны и их нужно находить, a, во-вторых, в реальных задачах этих решений очень много и прямой перебор вряд ли возможен. Симплекс-метод представляет собой некоторую процедуру направленного перебора опорных решений. Исходя из некоторого, найденного заранее опорного решения по определенному алгоритму симплекс-метода мы подсчитываем новое опорное решение, на котором значение целевой функции F не меньше, чем на старом. После ряда шагов мы приходим к опорному решению, которое является оптимальным планом.

Итак, симплексный метод вносит определенный порядок как при нахождении первого (исходного) базисного решения, так и при переходе к другим базисным решениям. Его идея состоит в следующем.

Имея систему ограничений, приведенную к общему виду, то есть к системе m линейных уравнений с n переменными (m < n), находят любое базисное решение этой системы, заботясь только о том, чтобы найти его как можно проще.

Если первое же найденное базисное решение оказалось допустимым, то проверяют его на оптимальность. Если оно не оптимально, то, осуществляется переход к другому, обязательно допустимому базисному решению.

Симплексный метод гарантирует, что при этом новом решении линейная форма, если и не достигнет оптимума, то приблизится к нему. С новым допустимым базисным решением поступают так же, пока не находят решение, которое является оптимальным.

Если первое найденное базисное решение окажется недопустимым, то с помощью симплексного метода осуществляется переход к другим базисным решениям, которые приближают нас к области допустимых решений, пока на каком-то шаге решения либо базисное решение окажется допустимым и к нему применяют алгоритм симплексного метода, либо мы убеждаемся в противоречивости системы ограничений.

Таким образом, применение симплексного метода распадается на два этапа: нахождение допустимого базисного решения системы ограничений или установление факта ее несовместности; нахождение оптимального решения.

При этом каждый этап может включать несколько шагов, соответствующих тому или иному базисному решению. Но так как число базисных решений всегда ограниченно, то ограниченно и число шагов симплексного метода.

Приведенная схема симплексного метода явно выражает его алгоритмический характер (характер четкого предписания о выполнении последовательных операций), что позволяет успешно программировать и реализовать этот метод на ЭВМ. Задачи же с небольшим числом переменных и ограничений могут быть решены симплексным методом вручную.

Не останавливаясь подробнее на сути алгоритма, опишем его вычислительную сторону. Вычисления по симплекс-методу организуются в виде симплекс-таблиц, которые являются сокращенной записью задачи линейного программирования в канонической форме. Перед составлением симплекс-таблицы задача должна быть преобразована, система ограничений приведена к допустимому базисному виду, c помощью которого из целевой функции должны быть исключены базисные переменные. Вопрос об этих предварительных преобразованиях мы рассмотрим ниже. Сейчас же будем считать, что они уже выполнены и задача имеет вид:

 

 

Здесь для определенности записи считается, что в качестве базисных переменных можно взять переменные X1, X2,…, Xr и что при этом b1, b2,…, br ≥ 0 (соответствующее базисное решение является опорным)

 

2.2 ПРИМЕР СОСТАВЛЕНИЯ СИМПЛЕКС-ТАБЛИЦЫ

 

Для составления симплекс-таблицы во всех равенствах в условии задачи члены, содержащие переменные, переносятся в левую часть, свободные оставляются справа, т.е. задача записывается в виде системы равенств:

 

 

Далее эта система оформляется в виде симплекс-таблиц:

 

 

Примечание. Названия базисных переменных здесь взяты лишь для определенности записи и в реальной таблице могут оказаться другими.

Порядок работы с симплекс таблицей

Первая симплекс-таблица подвергается преобразованию, суть которого заключается в переходе к новому опорному решению.

Алгоритм перехода к следующей таблице такой:

- просматривается последняя строка (индексная) таблицы и среди коэффициентов этой строки (исключая столбец свободных членов) выбирается наименьшее отрицательное число при отыскании max, либо наибольшее положительное при задачи на min. Если такового нет, то исходное базисное решение является оптимальным и данная таблица является последней;

- просматривается столбец таблицы, отвечающий выбранному отрицательному (положительному) коэффициенту в последней строке - ключевой столбец, и в этом столбце выбираются положительные коэффициенты. Если таковых нет, то целевая функция неограниченна на области допустимых значений переменных и задача решений не имеет;

- среди выбранных коэффициентов столбца выбирается тот, для которого абсолютная величина отношения соответствующего свободного члена (находящегося в столбце свободных членов) к этому элементу минимальна. Этот коэффициент называется разрешающим, а строка в которой он находится ключевой;

- в дальнейшем базисная переменная, отвечающая строке разрешающего элемента, должна быть переведена в разряд свободных, а свободная переменная, отвечающая столбцу разрешающего элемента, вводится в число базисных. Строится новая таблица, содержащая новые названия базисных переменных:

- разделим каждый элемент ключевой строки (исключая столбец свободных членов) на разрешающий элемент и полученные значения запишем в строку с измененной базисной переменной новой симплекс таблицы.

- строка разрешающего элемента делится на этот элемент и полученная строка записывается в новую таблицу на то же место.

- в новой таблице все элементы ключевого столбца = 0, кроме разрезающего, он всегда равен 1.

- столбец, у которого в ключевой строке имеется 0, в новой таблице будет таким же.

- строка, у которой в ключевом столбце имеется 0, в новой таблице будет такой же.

- в остальные клетки новой таблицы записывается результат преобразования элементов старой таблицы:

 

 

В результате получают новую симплекс-таблицу, отвечающую новому базисному решению.

Теперь следует просмотреть строку целевой функции (индексную), если в ней нет отрицательных значений (в задачи на нахождение максимального значения), либо положительных (в задачи на нахождение минимального значения) кроме стоящего на месте (свободного столбца), то значит, что оптимальное решение получено. В противном случае, переходим к новой симплекс таблице по выше описанному алгоритму.

Рассмотрим порядок решения задачи с помощью симплекс-таблиц на примере.

Если в только что рассмотренной задаче первое же полученное без всякого труда базисное решение оказалось допустимым, то в ряде задач исходное базисное решение может иметь одну, две и т.д. отрицательных компонент, т.е. быть недопустимым. В таких задачах надо сначала применить первый этап симплексного метода, т.е. с его помощью найти какое-либо допустимое решение (или установить несовместность системы ограничений), а затем уже искать оптимальное решение (сделать вывод о противоречии условий задачи). При этом надо помнить, что на первом этапе применения симплексного метода, т.е. пока мы ищем допустимое базисное решение, линейная форма не рассматривается, а все преобразования относятся только к системе ограничений.

Пусть задача линейного программирования задана в канонической форме, состоящей из m независимых уравнений с n переменными (или же она приведена к такому виду после введения добавочных неотрицательных переменных).

Выберем группу m основных переменных, которые позволяют найти исходное базисное решение (не нарушая общности, можем считать, что основными переменными являются первые m переменных). Выразив эти основные переменные через неосновные, получим следующую систему ограничений:

 

 

Этому способу разбиения переменных на основные и неосновные соответствует базисное решение (k1, k2,…, km, 0, 0,…, 0). Рассмотрим общий случай, когда это решение является недопустимым. От полученного базисного решения следует сначала перейти к какому-нибудь допустимому базисному решению. Причем не обязательно, чтобы этот переход осуществлялся сразу, за один шаг.

По предположению исходное базисное решение недопустимо. Следовательно, среди свободных членов системы ограничений (2.16) имеется хотя бы один отрицательный (число отрицательных свободных членов этой системы совпадает с числом отрицательных компонент исходного базисного решения). Пусть им является свободный член i-го уравнения ki, т.е. основная переменная xi в соответствующем базисном решении отрицательна.

Для перехода к новому базисному решению необходимо: выбрать переменную, которую следует перевести из неосновных в основные; установить, какая основная переменная при этом перейдет в число неосновных переменных. При переводе неосновной переменной в основные ее значение, как правило, возрастает: вместо нуля в исходном базисном решении оно будет положительно в новом базисном решении (исключая случай вырождения). Вернемся к i-му уравнению системы (2.16), содержащему отрицательный свободный член k1. Оно показывает, что значение переменной xi растет при возрастании значений тех неосновных переменных, которые в этом уравнении имеют положительные коэффициенты. Отсюда следует, что в основные можно переводить те неосновные переменные, которые в уравнении системы (2.16) с отрицательным свободным членом имеют положительные коэффициенты.

Здесь может быть три исхода:

1. в i-м уравнении системы (2.16) нет основных переменных с положительными коэффициентами, т.е. все коэффициенты bi, m+j (как и свободный член ki) отрицательны. В этом случае система ограничений несовместна, она не имеет ни одного допустимого решения, а следовательно, и оптимального;

2. в i-м уравнения имеется одна переменная xm+j, коэффициент b при которой положителен. В этом случае именно эта переменная переводится в основные;

. в i-м уравнении имеется несколько переменных с положительными коэффициентами bi, m+j. В этом случае в основные можно перевести любую из них.

Далее необходимо установить, какая основная переменная должна быть переведена в число неосновных на место переводимой в основные. В неосновные переводится та основная переменная, которая первой обратится в нуль при возрастании от нуля неосновной переменной, переводимой в основные. Иными словами, пользуемся тем же правилом, которое было установлено ранее. Находятся отношения свободных членов к коэффициентам при переменной, переводимой в основные, из всех уравнений, где знаки свободных членов и указанных коэффициентов противоположны, берется абсолютная величина этих отношений и из них выбирается наименьшая (если в некоторых уравнениях знаки свободных членов и указанных коэффициентов совпадают или в каких-то уравнениях переменная, переводимая в основные, отсутствует, то указанное отношение считается равным).

Уравнение, из которого получено наименьшее отношение, выделяется. Выделенное уравнение и покажет, какая из основных переменных должна быть переведена в неосновные. Выразив новые основные переменные через неосновные, перейдем к следующему базисному решению.

Если выделенным окажется уравнение с отрицательным свободным членом, то в новом базисном решении число отрицательных компонент будет на единицу меньше, чем в исходном. Если же выделенным окажется уравнение с положительным (или равным нулю) свободным членом, то в новом базисном решении число отрицательных компонент сохранится таким же, каким оно было в исходном базисном решении.

Таким образом, при переходе к новому базисному решению выгодно, чтобы выделенным оказалось уравнение с отрицательным свободным членом, и если есть возможность выбора, то предпочтение следует отдать такому обмену переменных, при котором выделенным оказывается уравнение с отрицательным свободным членом.

Итак, мы получим новое, улучшенное базисное решение, которое ближе к области допустимых решений системы ограничений. Если оно недопустимое, то к нему следует применить ту же схему еще раз. В результате через конечное число шагов мы получим допустимое базисное решение. Как только будет найдено допустимое базисное решение, переходят ко второму этапу симплексного метода, сущность которого рассмотрена при решении задачи

После овладения способом нахождения первого допустимого базисного решения любая задача линейного программирования может иметь трудности лишь вычислительного характера.

 

2.3. АЛГОРИТМ СИМПЛЕКС-МЕТОДА

Date: 2015-12-12; view: 1156; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.012 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию