Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основные статистические характеристики





Выборка – группа элементов, выбранная для исследования из всей совокупности элементов. Задача выборочного метода состоит в том, чтобы сделать правильные выводы относительно всего собрания объектов, их совокупности. Например, врач делает заключения о составе крови пациента на основе анализа ее нескольких капель.

При статистическом анализе, прежде всего, необходимо определить характеристики выборки, и важнейшей является среднее значение.

Среднее значение (Хс, М) – центра выборки, вокруг которого группируются элементы выборки.

Медиана элемент выборки, число элементов выборки со значениями больше которого и меньше которого – равно.

Дисперсия (D) – параметр, характеризующий степень разброса элементов выборки относительного среднего значения. Чем больше Дисперсия, тем дольше отклоняются значения элементов выборки от среднего значения.

Важной характеристикой выборки является мера разброса элементов выборки от среднего значения. Такой мерой является среднее квадратическое отклонение или стандартное отклонение.

Стандартное отклонение (среднее квадратическое отклонение) – параметр, характеризующий степень разброса элементов выборки от среднего значения. Стандартное отклонение обычно обозначается буквой “σ “ (сигма).

Ошибки среднего или стандартная ошибка (m) – параметр, характеризующий степень возможного отклонения среднего значения, полученного на исследуемойограниченной выборке, от истинного среднего значения, полученного на всей совокупности элементов.

Нормальное распределение – совокупность объектов, в которой крайние значения некоторого признака – наименьшее или наибольшее – появляются редко; чем ближе значение признака к среднему арифметическому, тем чаще оно встречается. Например, распределение пациентов по их чувствительности к воздействию любого фармакологического агента часто приближается к нормальному распределению.

Коэффициент корреляции (r) – параметр, характеризующий степень линейной взаимосвязи между двумя выборками. Коэффициент корреляции изменяется от -1 (строгая обратная линейная зависимость)до 1 (строгая прямая пропорциональная зависимость). При значении 0 линейной зависимости между двумя выборками нет.

Случайное событие – событие, которое может произойти или не произойти без видимой закономерности.

Случайная величина – величина, принимающая различные значения без видимой закономерности, т.е. случайным образом.

Вероятность (p) – параметр, характеризующий частоту появления случайного события. Вероятность изменяется от 0 до 1, причем вероятность р=0 означает, что случайное событие никогда не происходит (невозможное событие), вероятность р=1 означает, что случайное событие происходит всегда (достоверное событие).

Уровень значимости – максимальное значение вероятности появления события, при котором событие считается практический невозможным. В медицине наибольшее распространение получил уровень значимости равный 0,05. Поэтому если вероятность, с которой интересующее событие может произойти случайным образом р < 0,05, то принято считать это событие маловероятным, и если оно все же произошло, то это не было случайным.

Критерий Стьюдента – наиболее часто используется для проверки гипотезы: «Среднее двух выборок относятся к одной и той же совокупности». Критерий позволяет найти вероятность того, что оба средних относятся к одной и той же совокупности. Если это вероятность р ниже уровня значимости (р < 0,05), то принято считать, что выборки относятся к двум разным совокупностям.

Регрессия – линейный регрессионный анализ заключается в подборе графика и соответствующего уравнения для набора наблюдений. Регрессия используется для анализа воздействия на отдельную зависимую переменную значений одной или более независимых переменных. Например, на степень заболеваемости человека влияют несколько факторов, включая возраст, вес и иммунный статус. Регрессия пропорционально распределяет меру заболеваемости по этим трем факторам на основе данных наблюдаемой заболеваемости. Результаты регрессии впоследствии могут быть использованы для предсказания уровня заболеваемости новой, неисследованной группы людей.







Date: 2015-12-13; view: 306; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию