Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Основные логические функции. 31.Многосеточные электровакуумные лампы
31.Многосеточные электровакуумные лампы. Тетроды – лампы с двумя сетками. Одна из сеток является управляющей и имеет отрицательное напряжение. Другая сетка располагается либо между управляющей сеткой и катодом и наз катодной сеткой, либо между управляющей сеткой и анодом, и в этом случае наз экранирующей. На катодную сетку подается небольшое положительное напряжение. Однако, поскольку эта сетка расположена близко к катоду, ее проницаемость велика и даже при малом напряжении на аноде ток анода оказывается значительным. Благодаря катодной сетке возрастает также крутизна характеристики. ВАХ тетрода с катодной сеткой подобны характеристикам триода, за исключением пониженного анодного напряжения. Анодный ток тетрода с катодной сеткой можно определить по формуле
32.Электронно-дырочный переход и его свойства. P-n-переходом наз тонкий слой между двумя частями полупроводникового кристалла, в котором одна часть имеет электронную, а другая – дырочную элекропроводность. Технологический процесс создания p-n-перехода может быть различным: сплавление (сплавные диоды), диффузия одного вещества в другое (диффузионные диоды), эпитаксия – ориентированный рост одного кристалла на поверхности другого (эпитаксиальные диоды) и др. По конструкции p-n-переходы могут быть симметричными и несимметричными, резкими и плавными, плоскостными и точечными и др. Однако для всех типов переходов основным свойством является несимметричная электропроводность, при которой в одном направлении кристалл пропускает ток, а в другом – не пропускает. Устройство p-n-перехода. Одна часть этого перехода легирована донорной примесью и имеет электронную проводимость (N-область). Другая часть, легированная акцепторной примесью, имеет дырочную проводимость (P-область). Концентрация электронов в одной части и концентрация дырок в другой существенно различаются. Кроме того, в обеих частях имеется небольшая концентрация неосновных носителей. Электроны в N-области стремятся проникнуть в P-область, где концентрация электронов значительно ниже. Аналогично, дырки из P-области перемещаются в N-область. В результате встречного движения противоположных зарядов возникает так наз диффузионный ток. Электроны и дырки, перейдя через границу раздела, оставляют после себя противоположные заряды, которые препятствуют дальнейшему прохождению диффузионного тока. В результате на границе устанавливается динамическое равновесия и при замыкании N- и P-областей ток в цепи не протекает. При этом внутри кристалла на границе раздела возникает собственное электрическое поле Eсобст. Напряженность этого поля максимальна на границе раздела, где происходит скачкообразное изменение знака объемного заряда. На некотором удалении от границы раздела объемный заряд отсутствует и полупроводник является нейтральным. Высота потенциального барьера на p-n-переходе определяется контактной разностью потенциалом N- и P-областей. Контактная разность потенциалов, в свою очередь, зависит от концентрации примесей в этих областях
35.Серии логических ИМС. В зависимости от технологии изготовления логические элементы ИМС делятся на серии, отличающиеся набором элементов, напряжением питания, потребляемой мощностью, динамическими параметрами и др. Наибольшее применение получили серии логических ИМС, выполненные по ТТЛ (транзисторно-транзисторная логика), ЭСЛ (эмиттерно-связанная логика) и КМОП (комплементарная МОП логика) технологиям. Каждая из перечисленных технологий совершенствовалась, поэтому в каждой серии ИМС имеются подсерии, отличающиеся по параметрам.
36.Элемент 2И-НЕ (ТТЛ) схема принцип работы. В ИМС, выполненных по технологии ТТЛ, в качестве базового элемента используется многоэмиттерный транзистор. Многоэмиттерный транзистор (МЭТ) отличается от обычного транзистора тем, что он имеет несколько эмиттеров, расположенных так, что прямое взаимодействие между ними исключается. Благодаря этому переходы база-эмиттеры МЭТ можно рассматривать как параллельно включенные диоды. Второй транзистор VT2 является инвертором сигнала, выполняющим функцию НЕ. Если хотя бы на один эмиттер МЭТ подан низкий уровень, то ток базы VT2 равен нулю и на коллекторе VT2 будет высокий уровень. Для того чтобы напряжение на коллекторе VT2 имело низкий уровень, необходимо на все эмиттеры МЭТ подать высокий уровень. Благодаря этому алгоритму реализуется функция И-НЕ. В более поздних сериях ИМС, выполненных по технологии ТТЛ, использовался сложный инвертор с двуполярным ключом, а для исключения насыщения МЭТ применялись диоды Шотки с малым падением напряжения в прямом направлении (ТТЛШ).
Date: 2015-12-13; view: 515; Нарушение авторских прав |