Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Приведение произвольной пространственной системы сил к центру О. Дана пространственная система сил (рис





Дана пространственная система сил (рис. 7.5, а). Приведем ее к центру О.

Силы необходимо параллельно перемещать, при этом образуется система пар сил. Момент каждой из этих пар равен произведению модуля силы на расстояние до центра приведения.

В центре приведения возникает пучок сил, который может быть заменен суммарной силой (главный вектор) FГЛ (рис. 7.5, б).

Моменты пар сил можно сложить, получив суммарный момент системы Мгл (главный момент).

Таким образом, произвольная пространственная система сил приводится к главному вектору и главному моменту.

 

Главный вектор принято раскладывать на три составляющие, направленные вдоль осей координат (рис. 7.5, в).

Обычно суммарный момент раскладывают на составляющие: три момента относительно осей координат.

Абсолютное значение главного вектора (рис. 7.5б) равно

Абсолютное значение главного момента определяется по форму­ле.

 

Уравнения равновесия пространственной системы сил

При равновесии F гл = 0; Мгл = 0. Получаем шесть уравнений равновесия:

Шесть уравнений равновесия пространственной системы сил со­ответствуют шести независимым возможным перемещениям тела в пространстве: трем перемещениям вдоль координатных осей и трем вращениям вокруг этих осей.







Date: 2015-12-13; view: 345; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию