Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Потенциальная энергия деформации. Гипотезы прочности. U=å∫(M2(x)dV/(2EIz)); U равно половине произведения внешней силы на перемещение точки под этой силой (сумме произведений)





U=å∫(M2(x)dV/(2EIz)); U равно половине произведения внешней силы на перемещение точки под этой силой (сумме произведений), что есть работа внешних сил на перемещениях точки под ними.

Для одноосного напряженного состояния:

U= ½FΔl; U=½FΔl/(Al)=σε/2= σ2/2E;

При трехосном (пространственном напряженном состоянии):

U=σ1ε1/2+σ2ε2/2+σ3ε3/3=(1/2E)(σ122232-2υ(σ1σ22σ33σ1))

При деформации тела (пространственное) не только происходит изменение его объема, но и изменение формы (кубик → параллелепипед). U=UV+UФ, где UV – удельная потенциальная энергия изменения объема,

UФ – удельная потенциальная энергия формообразования (формоизменения).

UV=(1-2υ/6E)(σ123)2;

UФ=(1+υ/6E)((σ12)2+(σ23)2+(σ31)2);

Гипотезы прочности:

Цель теории прочности – сравнить напряженное состояние пространственное, плоское с допускаемыми напряжениями, которые получены экспериментальным путем для одноосного напряженного состояния. Два напряженных состояния (например: трехосное и одноосное) равноопасны, если при увеличении главных напряжений в одно и тоже число раз эти напряженные состояния одновременно становятся предельными. Предельное состояние – состояние потери работоспособности. Для хрупких σв → разрушение, для пластичных материалов σт → потеря упругих свойств.

Напряжение при напряженном состоянии равно опасное данному трехосному напряженному состоянию называют эквивалентным (σэкв). При формулировании теории прочности выбирают один или несколько факторов, приводящих к потере работоспособности элемента конструкции (величина напряжений σ, τ, величина деформаций ε, удельная потенциальная энергия, накопленная в теле) разрабатывается теорией, в которых учитывается скорость нагружения, температура, напряженное состояние, давление и т.д.

1-я теория прочности – теория нормальных наибольших напряжений, в соответствии с которой предельное состояние в точке тела наступает, если максимальные σ равны допускаемым. σэкв11. Условие прочности: σ1≤[σ]. Для 2-х и 3-хосных н.с. дает погрешности, т.к. не учитывается σ2 и σ3, но хорошо работает для хрупких материалов.

2-я теория прочности – максимальная относительная деформация ε: предельное состояние наступает, если εmax превышает допускаемую величину. Условие прочности: εmax≤[ε]. Не применяется в настоящее время т.к. дает неудовлетворительные результаты.

3-я теория прочности – теория наибольших касательных напряжений: предельное состояние наступает, если, τmax превышает допускаемую величину τ. При 3-осном состоянии:

τmax=(σ13)/2;

При 2-осном состоянии:

τmax=(σ12)/2;

При 1-осном н.с.: [τ]=[σ]/2.

Условие прочности: τmax≤[τ].

((σ13)/2)≤([σ]/2); σэкв3≤[σ], где σэкв313.

Дает хорошие результаты для пластичных деформаций, но е учитывает σ2.

4-я теория прочности – энергетическая: предельное состояние наступает, если удельная потенциальная энергия формоизменения превышает допускаемую величину.

UФ≤[UФ]; UФ=(1+υ/6E)((σ12)2+(σ23)2+(σ31)2);

[UФ]=((1+υ)2[σ]2)/6E; σэкв4≤ [σ];

σэкв4=√(½[(σ12)2+(σ23)2+(σ31)2]);

В настоящее время продолжается разработка теории прочности с целью учета мех. числа факторов, влияющих на работоспособность элементов конструкции и на свойство материалов, т.к. один и тот же материал в зависимости от температуры, скорости нагружения, напряженного состояния и др. ведет себя как хрупкий или пластичный. Чем больше факторов учитывает, тем достовернее результаты, тем меньше коэффициент запаса прочности.







Date: 2015-12-13; view: 294; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию