Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Определение напряжений в массиве грунта от действия сосредоточенной силы





Определение напряжений в массиве грунта от сосредоточенной силы. Задача Буссинеску 1885 г.

Составим расчётную схему данной задачи, представив грунтовое основание, как упругое полупространство.

Графическое представление условий (расчётная схема) задачи для определения напряжений в массиве грунта от сосредоточенной силы.

По условиям задачи необходимо определить значения вертикальных напряжений σz и касательных напряжений τzx; τzyв точке М, расположенной на площадке, параллельной плоскости, ограничивающей массив от действия сосредоточенной силы Р.

Решим эту задачу в три этапа:

Определим σR – в радиальном направлении перпендикулярно R (в т. М)

Определим σR' – в радиальном направлении (приложенном к площадке, параллельной плоскости ограничивающей массив).

Определим σz;τzx;τzy.

1 этап решения задачи:

Допустим, что под действием силы Р точка М переместилась в точку М1. Обозначим S – перемещение точки М. Тогда можно записать:

Мы получили перемещение точки М (см. выше приведённый рисунок).

В представленной зависимости осадка точки будет прямо пропорционально завесить от косинуса угла β и обратно пропорционально радиусу расположения точки, где А – коэффициент пропорциональности.

Определим относительное перемещение точки:

Согласно первому постулату теории упругости между напряжениями и деформациями должна быть прямая зависимость, следовательно:

Радиальное напряжение в точке М.

В этой формуле В – коэффициент пропорциональности. Для определения σRнеобходимо определить произведение коэффициентов АВ.

σR – определяется по методу, используемому в сопромате («метод сечений»: мысленно разрезают балку, одну часть отбрасывают и оставшуюся часть уравновешивают).

Расчётная схема для определения радиальных напряжений в грунте.

Для решения данной задачи поступим аналогичным образом. Рассматрим полушаровое сечение радиусом R и заменим отброшенное пространство напряжениями σR. Рассмотрим изменение β в пределах dβ. Составим уравнение равновесия на ось Z:

Величина радиального напряжения в грунте зависит от координат точки и величины прикладываемой силы.

2 этап решения задачи:

Схема пересчёта радиальных напряжений к вертикальным.

Из геометрических соотношений можно записать:

Мы получили величину радиальных напряжений, приложенных к площадке параллельно плоскости, ограничивающей массив.

3 этап решения задачи:

, подставим и получим

Введём обозначение:

Упрощая выше полученное выражение, вводим значение коэффициента К. Тогда получим:

Результат окончательного решения нашей задачи.

– определяется по таблице.







Date: 2015-12-13; view: 886; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию