Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






ОБЩИЕ ПРИНЦИПЫ СТРОЕНИЯ СЕНСОРНЫХ СИСТЕМ





Основными общими принципами построения сенсорных систем высших позвоночных животных и человека являются следующие:

1) Многослойность, т. е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний — с нейронами моторных областей коры большого мозга. Это свойство дает возможность специализировать нейронные слои на переработке разных видов сенсорной информации, что позволяет организму быстро реагировать на простые сигналы, анализируемые уже на первых уровнях сенсорной системы. Создаются также условия для избирательного регулирования свойств нейронных слоев путем восходящих влияний из других отделов мозга;

2) многоканальность сенсорной системы, т. е. наличие в каж­дом слое множества (от десятков тысяч до миллионов) нервных клеток, связанных с множеством клеток следующего слоя. Нали­чие множества таких параллельных каналов обработки и передачи информации обеспечивает сенсорной системе точность и деталь­ность анализа сигналов и большую надежность;

3) разное число элементов в соседних слоях, что формирует «сенсорные воронки». Так, в сетчатке глаза человека насчитыва­ется 130 млн фоторецепторов, а в слое ганглиозных клеток сет­чатки нейронов в 100 раз меньше («суживающаяся воронка»). На следующих уровнях зрительной системы формируется «расши­ряющаяся воронка»: число нейронов в первичной проекционной области зрительной области коры в тысячи раз больше, чем ган­глиозных клеток сетчатки. В слуховой и в ряде других сенсорных систем от рецепторов к коре большого мозга идет «расширяю­щаяся воронка». Физиологический смысл «суживающейся ворон­ки» заключается в уменьшении избыточности информации, а «расширяющейся» — в обеспечении дробного и сложного анализа разных признаков сигнала;

4) дифференциация сенсорной системы по вертикали и по го­ризонтали. Дифференциация по вертикали заключается в образо­вании отделов, каждый из которых состоит из нескольких нейрон­ных слоев. Таким образом, отдел представляет собой более круп­ное морфофункциональное образование, чем слой нейронов. Каж­дый отдел (например, обонятельные луковицы, кохлеарные ядра слуховой системы или коленчатые тела) осуществляет определен­ную функцию.



Дифференциация по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев. Так, в зрении работают два параллельных ней­ронных канала, идущих от фоторецепторов к коре большого мозга и по-разному перерабатывающих информацию, поступающую от центра и от периферии сетчатки глаза.

14.1.3. Основные функции сенсорной системы

Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) пе­редачу и преобразование; 4) кодирование; 5) детектирование при­знаков; 6) опознание образов. Обнаружение и первичное различе­ние сигналов

обеспечивается рецепторами, а детектирование и опознание сигналов — нейронами коры больших полушарий. Пе­редачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.

Обнаружение сигналов. Оно начинается в рецепторе — специа­лизированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутрен­ней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.

Классификация рецепторов. В практическом отношении наибо­лее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздра­жении. Согласно этой классификации, у человека различают зри­тельные, слуховые, обонятельные, вкусовые, осязательные рецеп­торы, термо-, проприо- и вестибулорецепторы (рецепторы поло­жения тела и его частей в пространстве) и рецепторы боли.

Существуют рецепторы внешние (экстерорецепторы) и внут­ренние (интерорецепторы). К экстерорецепторам относятся слу­ховые, зрительные, обонятельные, вкусовые, осязательные. К интерорецепторам относятся вестибуло- и проприорецепторы (рецеп­торы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).

По характеру контакта со средой рецепторы де­лятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные — возбуждающиеся при непосредственном сопри­косновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на кото­рый они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слу­ховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердеч­но-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецеп­торы (кожи и внутренних органов, а также центральные термо­чувствительные нейроны); болевые (ноцицептивные) рецепторы.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактиль­ные и проприорецепторы. Они различаются тем, что преобразо­вание энергии раздражения в энергию нервного импульса проис­ходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибу­лярного аппарата. У них между раздражителем и первым нейро­ном находится специализированная рецепторная клетка, не гене­рирующая гене­рирующая импульсы. Таким образом, первый нейрон возбужда­ется не непосредственно, а через рецепторную (не нервную) клетку.



Общие механизмы возбуждения рецепторов. При действии сти­мула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себя три основных этапа: 1) взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой мо­лекулой, которая находится в составе клеточной мембраны рецеп­торной клетки; 2) внутриклеточные процессы усиления и пере­дачи сенсорного стимула в пределах рецепторной клетки; и 3) от­крывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приво­дит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала). В первично-чувствующих рецепторах этот потенциал действует на наиболее чувствительные участки мембраны, способные генериро­вать потенциалы действия — электрические нервные импульсы. Во вторично-чувствующих рецепторах рецепторный потенциал вы­зывает выделение квантов медиатора из пресинаптического окон­чания рецепторной клетки. Медиатор (например, ацетилхолин), воздействуя на постсинаптическую мембрану первого нейрона, изменяет ее поляризацию (генерируется постсинаптический потенцил). Постсинаптический потенциал первого нейрона сенсор­ной системы называют генераторным потенциалом, так как он вызывает генерацию импульсного ответа. В первично-чувствую­щих рецепторах рецепторный и генераторный потенциалы — одно и то же.

Абсолютную чувствительность сенсорной системы измеряют по­рогом реакции. Чувствительность и порог — обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот. Обычно при­нимают за пороговую такую силу стимула, вероятность восприя­тия которого равна 0,5 или 0,75 (правильный ответ о наличии сти­мула в половине или в 3/4 случаев его действия). Более низкие значения интенсивности считаются подпороговыми, а более высо­кие — надпороговыми. Оказалось, что и в подпороговом диапа­зоне реакция на сверхслабые раздражители возможна, но она неосознаваема (не доходит до порога ощущения). Так, если сни­зить интенсивность вспышки света настолько, что человек уже не может сказать, видел он ее или нет, от его руки можно зарегистри­ровать неощущаемую кожно-гальваническую реакцию на данный сигнал.

Чувствительность рецепторных элементов к адекватным раздра­жителям, к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудить­ся при действии одиночной молекулы пахучего вещества, фото­рецептор — одиночным квантом света. Чувствительность слуховых рецепторов также предельна: если бы она была выше, мы слы­шали бы постоянный шум из-за теплового движения молекул.

Различение сигналов. Важная характеристика сенсорной сис­темы — способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение на­чинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное раз­личие между стимулами, которое сенсорная система может заме­тить (дифференциальный, или разностный, порог).

Порог различения интенсивности раздражителя практически всегда выше ранее действовавшего раздражения на определенную долю (закон Вебера). Так, усиление давления на кожу руки ощу­щается, если увеличить груз на 3% (к 100-граммовой гирьке надо добавить 3 г, а к 200-граммовой — 6 г). Эта зависимость выра­жается формулой: dI/I= const, где I — сила раздражения, dI — ее едва ощущаемый прирост (порог различения), const — постоянная величина (константа). Аналогичные соотношения получены для зрения, слуха и других органов чувств человека.

Зависимость силы ощущения от силы раздражения (закон Ве­бера—Фехнера) выражается формулой: E=a-logI+b, где Е — величина ощущения, I — сила раздражения, а и b — константы, различные для разных модальностей стимулов. Согласно этой формуле, ощущение увеличивается пропорционально логарифму интенсивности раздражения.

Выше упоминалось о различении силы раздражителей. Прост­ранственное различение основано на распределении возбуждения в слое рецепторов и в нейронных слоях. Так, если два раздра­жителя возбудили два соседних рецептора, то различение этих раздражителей невозможно и они будут восприняты как единое целое. Необходимо, чтобы между двумя возбужденными рецепто­рами находился хотя бы один невозбужденный. Для временного различения двух раздражений необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вы­званный вторым стимулом, не попадал в рефрактерный период от предыдущего раздражения.

Передача и преобразование сигналов. Процессы преобразова­ния и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа.

Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобра­зований выделяют изменения соотношения разных частей сигнала. Так, в зрительной и соматосенсорной системах на корковом уровне значительно искажаются геометрические пропорции пред­ставительства отдельных частей тела или частей поля зрения. В зрительной области коры резко расширено представительство информационно наиболее важной центральной ямки сетчатки при относительном сжатии проекции периферии поля зрения («цикло­пический глаз»). В соматосенсорной области коры также преиму­щественно представлены наиболее важные для тонкого различения и организации поведения зоны — кожа пальцев рук и лица («сен­сорный гомункулюс»).

Для временных преобразований информации во всех сенсорных системах типично сжатие, временная компрессия сигналов: пере­ход от длительной (тонической) импульсации нейронов на ниж­них уровнях к коротким (фазическим) разрядам нейронов высо­ких уровней.

Ограничение избыточности информации и выделение сущест­венных признаков сигналов. Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информа­ционные резервы мозга. Избыточность сенсорных сообщений огра­ничивается путем подавления информации о менее существенных сигналах. Менее важно во внешней среде то, что неизменно либо изменяется медленно во времени и в пространстве. Например, на сетчатку глаза длительно действует большое световое пятно. Чтобы не передавать все время в мозг информацию от всех возбужденных рецепторов, сенсорная система пропускает в мозг сигналы только о начале, а затем о конце раздражения, причем до коры доходят сообщения только от рецепторов, которые лежат по контуру воз­бужденной области.

Кодирование информации. Кодированием называют совершае­мое по определенным правилам преобразование информации в условную форму — код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени. Такой способ кодирова­ния крайне прост и устойчив к помехам. Информация о раздраже­нии и его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов). Ампли­туда, длительность и форма каждого импульса одинаковы, но число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбужден­ных нейронов, а также местом возбуждения в нейронном слое.

Особенности кодирования в сенсорных системах. В отличие от телефонных или телевизионных кодов, которые декодируются восстановлением первоначального сообщения в исходном виде, в сенсорной системе такого декодирования не происходит. Еще одна важная особенность нервного кодирования — множественность и перекрытие кодов. Так, для одного и того же свойства сигнала (например, его интенсивности) сенсорная система исполь­зует несколько кодов: частотой и числом импульсов в пачке, чис­лом возбужденных нейронов и их локализацией в слое. В коре большого мозга сигналы кодируются последовательностью включе­ния параллельно работающих нейронных каналов, синхронностью ритмических импульсных разрядов, изменением их числа. В ко­ре используется также позиционное кодирование. Оно заклю­чается в том, что какой-то признак раздражителя вызывает воз­буждение определенного нейрона или небольшой группы нейронов, расположенных в определенном месте нейронного слоя. Например, возбуждение небольшой локальной группы нейронов зрительной области коры означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации.

Для периферических отделов сенсорной системы типично вре­менное кодирование признаков раздражителя, а на высших уров­нях происходит переход к преимущественно пространственному (в основном позиционному) коду.

Детектирование сигналов. Это избирательное выделение сен­сорным нейроном того или иного признака раздражителя, имею­щего поведенческое значение. Такой анализ осуществляют нейро­ны-детекторы, избирательно реагирующие лишь на определенные параметры стимула. Так, типичный нейрон зрительной области коры отвечает разрядом лишь на одну определенную ориентацию темной или светлой полоски, расположенной в определенной части поля зрения. При других наклонах той же полоски ответят другие нейроны. В высших отделах сенсорной системы сконцент­рированы детекторы сложных признаков и целых образов. Приме­ром могут служить детекторы лица, найденные недавно в нижне­височной области коры обезьян (предсказанные много лет назад, они были названы «детекторы моей бабушки»). Многие детек­торы формируются в онтогенезе под влиянием окружающей среды, а у части из них детекторные свойства заданы генетически.

Опознание образов. Это конечная и наиболее сложная опера-ля сенсорной системы. Она заключается в отнесении образа к эму или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В ре­зультате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.

Опознание часто происходит независимо от изменчивости сиг­нала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положе­нии в поле зрения. Это означает, что сенсорная система форми­рует независимый от изменений ряда признаков сигнала (инва­риантный) сенсорный образ.

Переработку информации в сенсорной системе осуществляют процессы возбудительного и тормозного межнейронного взаимодей­ствия. Возбудительное взаимодействие заключается в том, что аксон каждого нейрона, приходя в вышележащий слой сенсорной системы, контактирует с несколькими нейронами, каждый из которых получает сигналы от нескольких клеток предыдущего слоя.

Совокупность рецепторов, сигналы которых поступают на дан­ный нейрон, называют его рецептивным полем. Рецептивные поля соседних нейронов частично перекрываются (рис. 14.1). В резуль­тате такой организации связей в сенсорной системе образуется так называемая нервная сеть. Благодаря ей повышается чувстви­тельность системы к слабым сигналам, а также обеспечивается высокая приспособляемость к меняющимся условиям среды.

Тормозная переработка сенсорной информации основана на том, что обычно каждый возбужденный сенсорный нейрон акти­вирует тормозный интернейрон. Интернейрон в свою очередь по­давляет импульсацию как самого возбудившего его элемента (по­следовательное, или возвратное, торможение), так и его соседей по слою (боковое, или латеральное, торможение). Сила этого торможения тем больше, чем сильнее возбужден первый элемент и чем ближе к нему соседняя клетка. Значительная часть опера­ций по снижению избыточности и выделению наиболее сущест­венных сведений о раздражителе производится латеральным тор­можением.

14.1.5. Адаптация сенсорной системы

Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сенсорная адаптация — общее свойство сенсорных систем, заклю­чающееся в приспособлении к длительно действующему (фоно­вому) раздражителю. Адаптация проявляется в снижении абсо­лютной и повышении дифференциальной чувствительности сен­сорной системы. Субъективно адаптация проявляется в привыка­нии к действию постоянного раздражителя (например, мы не за­мечаем непрерывного давления на кожу привычной одежды).

Адаптационные процессы начинаются на уровне рецепторов, охватывая и все нейронные уровни сенсорной системы. Адаптация слаба только в вестибуло- и проприорецепторах. По скорости дан­ного процесса все рецепторы делятся на быстро- и медленно адап­тирующиеся. Первые после развития адаптации практически не посылают в мозг информации о длящемся раздражении. Вторые эту информацию передают в значительно ослабленном виде. Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается. Так, в темноте абсолютная чувствительность зрения резко повышается.

В сенсорной адаптации важную роль играет эфферентная регу­ляция свойств сенсорной системы. Она осуществляется за счет нисходящих влияний более высоких на более низкие ее отделы. Происходит как бы перенастройка свойств нейронов на оптималь­ное восприятие внешних сигналов в изменившихся условиях. Со­стояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, инте­грированную с другими отделами мозга и организма в целом. Эфферентные влияния в сенсорных системах чаще всего имеют тормозной характер, т. е. приводят к уменьшению их чувстви­тельности и ограничивают поток афферентных сигналов.

Общее число эфферентных нервных волокон, приходящих к рецепторам или элементам какого-либо нейронного слоя сенсорной системы, как правило, во много раз меньше числа афферентных нейронов, приходящих к тому же слою. Это определяет важную особенность эфферентного контроля в сенсорных системах: его широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части нижележащего нейронного слоя.






Date: 2015-12-12; view: 200; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию