Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основные формулы. где – модуль силы взаимодействия двух точечных зарядов и ; – расстояние между зарядами; - электрическая постоянная; -диэлектрическая проницаемость





· Закон Кулона:

где – модуль силы взаимодействия двух точечных зарядов и ; – расстояние между зарядами; - электрическая постоянная; -диэлектрическая проницаемость среды, в которой находятся заряды (для вакуума ).

· Напряженность и потенциал электростатического поля:

, , или ,

где – сила, действующая на точечный положительный заряд , помещенный в данную точку поля; – потенциальная энергия заряда ; – работа по перемещению заряда из данной точки поля в бесконечность.

· Напряженность и потенциал электростатического поля, создаваемого точечным зарядом на расстоянии от него

; .

· Поток вектора напряженности через площадку :

,

где – вектор, модуль которого равен , а направление совпадает с нормалью к площадке; – составляющая вектора по направлению нормали к площадке.

· Поток вектора напряженности через произвольную поверхность :

.

· Напряженность и потенциал поля, создаваемого системой точечных зарядов (принцип суперпозиции (наложения) электростатических полей):

; ,

где , – соответственно напряженность и потенциал поля, создаваемого зарядом , – число зарядов, создающих поле.

· Связь между напряженностью и потенциалом электростатического поля:

, или ,

где , , – единичные векторы координатных осей.

· В случае поля, обладающего центральной или осевой симметрией:

.

· Для однородного поля (поля плоского конденсатора):

,

где – разность потенциалов между пластинами конденсатора, – расстояние между ними.

· Электрический момент диполя (дипольный момент):

,

где – плечо диполя (векторная величина, направленная от отрицательного заряда к положительному).

· Линейная, поверхностная и объемная плотность зарядов, т.е. заряд, приходящийся соответственно на единицу длины, площади и объема:

; ; .

· Теорема Гаусса для электростатического поля в вакууме:

,

где – алгебраическая сумма зарядов, заключенных внутри замкнутой поверхности ; – число зарядов; – объемная плотность зарядов.

· Напряженность поля, создаваемая равномерно заряженной бесконечной плоскостью:

.

· Напряженность и потенциал поля, создаваемого проводящей заряженной сферой радиусом с зарядом на расстоянии от центра сферы:

; при (внутри сферы);

; при (вне сферы).

· Напряженность поля, создаваемого равномерно заряженной бесконечной цилиндрической поверхностью радиусом на расстоянии от оси цилиндра:

при (внутри цилиндра);

при (вне цилиндра).

· Работа, совершаемая силами электростатического поля при перемещении заряда из точки 1(потенциал ) в точку 2 (потенциал ):

, или ,

где – проекция вектора на направление элементарного перемещения .

· Вектор поляризации диэлектрика:

,

где – объем диэлектрика; – дипольный момент - й молекулы, – число молекул.

· Связь между вектором поляризации и напряженностью электростатического поля в той же точке внутри диэлектрика:

æ ,

где æ – диэлектрическая восприимчивость вещества.

· Связь диэлектрической проницаемости с диэлектрической восприимчивостью æ:

= 1 + æ.

 

 

· Связь между напряженностью поля в диэлектрике и напряженностью внешнего поля:

.

· Связь между векторами электрического смещения и напряженности электростатического поля:

.

· Связь между векторами , и :

.

· Теорема Гаусса для электростатического поля в диэлектрике:

,

где – алгебраическая сумма заключенных внутри замкнутой поверхности свободных электрических зарядов; – составляющая вектора по направлению нормали к площадке ; – вектор, модуль которого равен , а направление совпадает с нормалью к площадке. Интегрирование ведется по всей поверхности.

· Электроемкость уединенного проводника и конденсатора:

, ,

где – заряд, сообщенный проводнику; – потенциал проводника;
– разность потенциалов между пластинами конденсатора.

· Электроемкость плоского конденсатора:

,

где – площадь пластины конденсатора; – расстояние между пластинами.

· Электроемкость батареи конденсаторов: при последовательном (а) и параллельном (б) соединениях:

а) , б) ,

где – электроемкость -го конденсатора; – число конденсаторов.

· Энергия уединенного заряженного проводника:

.

· Потенциальная энергия системы точечных зарядов:

,

где – потенциал, создаваемый в той точке, где находится заряд , всеми зарядами, кроме -го, - число зарядов.

· Энергия заряженного конденсатора:

,

где – заряд конденсатора; – его электроёмкость; – разность потенциалов между обкладками.


· Сила притяжения между двумя разноименно заряженными обкладками плоского конденсатора:

.

· Энергия электростатического поля плоского конденсатора:

,

где – площадь одной пластины; – разность потенциалов между пластинами; – объем области между пластинами конденсатора.

 

 

· Объемная плотность энергии электростатического поля:

,

где – напряжённость поля, – электрическое смещение.

 







Date: 2016-02-19; view: 528; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.02 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию