Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Статические и динамические модели
Статической называется модель объекта, отражающая оригинал в какой-то отдельный момент времени, т.е. «моментальная фотография» объекта. Например, буквально фотография или схема. С фотографией (рис. 1.11) все ясно, что же касается схемы, то даже если это структурная схема с указанием передаточных функций звеньев, по ней явно не видно, как модель изменяется с течением времени (рис. 1.12). Рис.1.11. Фотография как пример статической модели
Рис. 1.12. Структурная схема системы
Другой очевидный и знакомый пример статической модели –статическая характеристика, т.е. зависимость выходной переменной объекта (системы) от входной переменной в установившемся режиме, т.е. при t®∞: y(∞)=F[x(∞)] (рис. 1.13). Рис. 1.13. Статическая характеристика системы ” System ” Динамическая модель, в отличие от статической, учитывает изменения, происходящие в системе с течением времени. Это может выражаться в зависимости входной, выходной и промежуточных переменных от времени. Примером могут служить переходные функции – реакции систем на единичное ступенчатое входное воздействие (рис. 1.14). Рис. 1.14. Переходная функция h(t) системы “ System ”
Обычно переходные функции получаются в результате: 1) аналитического решения; 2) численного интегрирования дифференциальных уравнений, описывающих исследуемую систему; 3) обратного преобразования Лапласа от передаточной функции системы, деленной на s. Модельв виде дифференциальных уравнений (ДУ) является широко распространенной динамической моделью. Пример. Пусть система описывается моделью в виде дифференциального уравнения: входное воздействие x(t)= 1 [t] – единичное ступенчатое (как на рис. 1.14), а начальные условия имеют вид: y(t= 0 ) = 0, т.е. процесс начинается из начала координат. Аналитическое решение. Это линейное дифференциальное уравнение первого порядка с постоянными коэффициентами (стационарное). Его решение складывается из двух слагаемых – общего и частного решения: Общее решение ищется в виде: где А – неизвестный коэффициент, определяемый из начальных условий; l – корень характеристического уравнения, которое в данном случае выглядит так: , откуда l=– 2. В стандартной форме исходное уравнение должно иметь при y(t) коэффициент, равный единице. Для этого исходное уравнение разделим на 4 и получим: Частное решение зависит от вида правой части ДУ; в данном примере, поскольку x(t)= 1 [t], частное решение будет равно константе: Суммарное решение будет выглядеть так: Теперь, подставив в решение y(t) начальное условие (для уравнения 1-го порядка оно одно), можно найти значение коэффициента А: откуда А = – 1,25. Окончательно решение имеет вид: Поскольку входным воздействием было единичное ступенчатое, то полученное решение является переходной функцией и обозначается, как обычно, h(t). График этой функции показан на рис. 1.15. Рис. 1.15. Переходная функция h(t) – решение ДУ из примера
Подобный h(t) характер (с разной погрешностью) имеют такие процессы, как разгон автомобиля, нагрев жидкости, накопление знаний в некоторой предметной области, увеличение численности популяции животных, рост производства (при определенных условиях) и многие другие. В этом заключается одно из важнейших свойств математическихмоделей – их универсальность.
Date: 2016-02-19; view: 748; Нарушение авторских прав |