Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Решение с помощью ППП Excel. Значения линейных коэффициентов парной корреляции определяют тесноту попарно связанных переменных, использованных в данном уравнении множественной регрессии
Значения линейных коэффициентов парной корреляции определяют тесноту попарно связанных переменных, использованных в данном уравнении множественной регрессии. Линейные коэффициенты частной корреляции оценивают тесноту связи значений двух переменных, исключая влияние всех других переменных, представленных в уравнении множественной регрессии. К сожалению, в ППП Excel нет специального инструмента для расчета линейных коэффициентов частной корреляции. Матрицу парных коэффициентов корреляции переменных можно рассчитать, используя инструмент анализа данных Корреляция. Для этого: 1) в главном меню последовательно выберите пункты Сервис/ Анализ данных/ Корреляция. Щелкните по кнопке OK; 2) заполните диалоговое окно ввода данных и параметров вывода (см. рис. 1.1); 3) результаты вычислений – матрица коэффициентов парной корреляции – представлены на рис. 2.1
Рис. 2.1 Матрица коэффициентов парной корреляции
Значения коэффициентов парной корреляции указывают на весьма тесную связь выработки y как с коэффициентом обновления основных фондов - Коэффициенты частной корреляции дают более точную характеристику тесноты связи двух признаков, чем коэффициенты парной корреляции, так как очищают парную зависимость от взаимодействия данной пары признаков с другими признаками, представленными в модели. Коэффициенты частной корреляции могут быть вычислены при проведении многофакторного анализа – Multiple Variable Analysis. Если сравнивать коэффициенты парной и частной корреляции, можно сказать, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи, именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи. Date: 2016-02-19; view: 595; Нарушение авторских прав |