![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Блок индикации
При выборе типа индикатора следует учитывать требования к размерам знаков, яркости свечения, возможность по размещению блока питания, совместимость с примененными микросхемами, энергопотребление. Из сопоставления характеристик индикаторов и микросхем серии К176 можно сделать вывод о том, что большинство индикаторов требуют сопряжения с микросхемами этой серии. Причины этого уже указывались — это либо недостаточное напряжение для возбуждения сегментов и обеспечения их свечения с необходимой яркостью, либо недостаточный выходной ток. Микросхемы счетчиков серии К176 в большинстве рассчитаны для совместной работы с семисегментными индикаторами. Поэтому здесь основное внимание будет уделено рассмотрению условий и способов сопряжения микросхем К176ИЕЗ, К.176ИЕ4 с семисегментными индикаторами разных типов. В крупногабаритных электронных часах наиболее широкое применение находят катодолюминисцентные индикаторы. Приборы этого типа для своей работы в нормальном режиме требуют напряжений на анодах и сетке 20 — 30 В. Отсюда следует, что для управления ими требуется повысить напряжение, которое формируется на выходах микросхем серии К176. Правда, в ряде случаев оказывается достаточной яркость свечения знаков при пониженном до 9 В напряжении на электродах индикатора. Тогда индикатор выводами сегментов непосредственно подключается к выходам микросхемы счетчика, а сеткой к источнику питания. Однако для обеспечения нормальной по техническим условиям яркости свечения требуется сопряжение микросхемы и индикаторного прибора по уровню напряжения. Вариант элемента сопряжения на основе транзисторного ключа с напряжением питания U%, равным 20 — 25 В, приведен на рис. 29,а. Для компактности блок сопряжения целесообразно выполнять на транзисторных сборках, в частности К1НТ661. Рис. 29. Узлы сопряжения микросхем серии К176 с индикаторами: а — катодолюминесцентными, б — накальными, в — светодиодными, г — жидкокристаллическими
Поскольку транзисторный ключ с ОЭ инвертирует сигнал с выхода микросхемы, то необходимо управляющие сегментами сигналы на выходах микросхемы представить в инверсном коде. Для этого на управляющий вход V (вывод 6) микросхемы К176ИЕЗ, К176ИЕ4 следует подать напряжение высокого уровня 10, например напряжение источника питания. Для обеспечения четкой индикации в условиях сильной освещенности применяют электровакуумные на-кальные индикаторы. Эти приборы при работе пропускают через нить сегмента ток 20 — 30 мА. Микросхемы серии К176 допускают через свои выходные цепи ток не более 1 мА. Следовательно, для совместного применения этих микросхем с накальными индикаторами необходимо их сопряжение по току. Пример реализации элемента сопряжения приведен на рис. 29,6. Он состоит из транзисторного ключа с ОК. Сегмент индикатора включается последовательно с токоограни-чивающим резистором в цепи эмиттера. Для расчета сопротивления этого резистора следует исходить из ограничений на максимальный коллекторный ток транзистора и допускаемый ток накала нити сегмента. Указанная для накальных индикаторов особенность характерна и для индикаторов на основе полупроводниковых светодиодов. Для свечения сегмента эти приборы требуют ток 10 — 20 мА. Поэтому подключение светодиодных индикаторов к выходам микросхем серии К176 должно осуществляться через согласующий элемент, в частности через транзисторный ключ (рис. 29,в). В цепь коллектора последовательно с органичивающим ток резистором включен светодиод (сегмент). При сигнале 1, подаваемом на базу транзистора с выхода микросхемы, он открывается, и через светодиод протекает ток, вызывающий свечение сегмента. Сопротивление резистора выбирается исходя из допустимого тока через транзистор и значения рабочего тока светодиода. Напряжение питания ключа U2 может быть равно напряжению источника питания микросхемы. Однако и в этом случае необходимо разделять источники питания для устранения влияния многоразрядного индикатора на режим микросхем. Заметим, что в данном случае сопряжения свечение сегмента вызывается сигналом 1 па соответствующем выходе микросхемы счетчика. Следовательно, выходные сигналы микросхемы должны представляться своими прямыми значениями, а для этого на входе V (вывод 6) должен быть обеспечен нулевой потенциал. Все более широкое применение находят индикаторы на жидких кристаллах. С появлением ЖКИ с большими размерами знаков значительно расширилась область их практического применения за счет крупногабаритных электронных часов и других устройств отображения информации. Благоприятные перспективы использования ЖКИ связывают с их низким энергопотреблением, удобной конструкцией и невысокой стоимостью. Для большинства индикаторов на ЖК достаточным для управления является напряжение 9 В. Поэтому микросхемы серии К176 могут работать с этими индикаторами без сопряжения. Однако следует учитывать, что для увеличения срока служба индикаторов управление ими должно производиться переменным напряжением с частотой десятки герц. В типовых конструкциях часов для этой цели используется импульсная последовательность с частотой повторения 64 Гц. В микросхемах серии К176, в частности К176ИЕ5, на основе которых изготавливают генераторы секундных (минутных) импульсов, предусматривается выход, на котором при кварцевом резонаторе на частоту 32768 Гц получается импульсная последовательность с частотой 64 Гц (у микросхемы К176ИВ5 — это вывод 1, см. рис. 18,а). Эта последовательность, снимаемая с вывода 1 микросхемы К176ИЕ5, подается на вход V (вывод 6) микросхем (К176ИЕЗ, К176ИЕ4) и общий электрод индикатора (рис. 29,г). Тогда выходные сигналы микросхемы счетчика будут иметь значения, определяемые напряжением на входе V в соответствии с выражением (на примере напряжений, подаваемых на сегмент а): A=aV+aV. Следовательно, при а=0(а=1) на этом выходе микросхемы будет переменное напряжение 64 Гц, так как A — V. Поскольку это напряжение син-фазно с напряжением на общем электроде индикатора, то разность напряжения между сегментом а и общим электродом равна нулю и жидкокристаллическое вещество сохраняет свою прозрачность, т. е. сегмент не виден. В другом случае, когда значение сегментного сигнала а равно 1, результирующий сигнал на этом выходе А сохраняется в виде последовательности импульсов, но с противоположной фазой по отношению к импульсам на общем электроде, так как А = V. Таким образом, к сегменту относительно общего электрода прикладывается знакопеременное напряжение в виде противофазных импульсов, следующих с частотой 64 Гц, имеющих амплитуду 8 — 9 В. Этого напряжения достаточно для переориентации молекул вещества и, как следствие, потемнения сегмента. При использовании более высоковольтных ЖКИ появляется необходимость в их сопряжении с микросхемами по напряжению. В заключение заметим, что рассмотрены примеры схемотехнических решений узла сопряжения микросхем с блоком индикации на основе дискретных компонентов, поскольку эти решения просты в реализации, требуют небольшого количества доступных компонентов и потому практичны.
РЕАЛИЗАЦИЯ ЭЛЕКТРОННЫХ ЧАСОВ НА МИКРОСХЕМАХ СЕРИИ К176
Date: 2015-05-23; view: 1958; Нарушение авторских прав |