Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Возбуждающие химические синапсы





Для химического синапса характерны пресинаптическая область, синаптическая щель и постсинаптическая область.

Синаптическая щель имеет у химических синапсов просвет от 20 до 50 нм. В пресинаптической области всегда имеются везикулы, содержащие медиатор (трансмиттер, нейротрансмиттер, нейромедиатор).

В рассматриваемом типе синапса из-за высокого сопротивления синаптических мембран и широкой синаптической щели электротонический потенциал и ПД не способны перейти к постсинаптической области, используя кабельные свойства мембраны. Коэффициент передачи в этом случае меньше тысячных долей, а внеклеточный шунт имеет низкое сопротивление и «уводит» заряд.

 

По пресинаптическому волокну механизмом аксонного транспорта (400 мм/сут) осуществляется передвижение ферментных систем и предшественников для синтеза медиаторов и везикул. В синаптическом окончании всегда имеется некоторый запас готового для секреции медиатора, упакованного в везикулы.

Синтез медиаторов осуществляется с помощью ферментов, например, ацетилхолин АХ синтезируется холинацетилтрансферазой, которая переносит ацетильную группу от ацетилкоэнзима А на холин. Примерно 85% готового медиатора хранится в везикулах. Процесс синтеза и распада АХ происходит постоянно.

Выход медиатора из окончания также происходит непрерывно, это так называемый неквантовый релизинг, его интенсивность может превышать действенный, квантовый в десятки раз, но электрогенных последствий он не имеет (оказывает трофическое действие на объект иннервации), и АХ разрушается без изменения проницаемости постсинаптической мемебраны.

Квантовый выход АХ имеет электрически значимые последствия. Инициация квантового релизинга задается приходом по аксону потенциала действия, который в потерявшем миелин пресинаптическом окончании деполяризует его мембрану, что приводит к открытию потенциалчувствительных Са++ каналов. Из-за высокого электрохимического и концентрационного градиента ионы Са++ входят в пресинаптическое окончание. Кальций необходим для того, чтобы везикулы с медиатором могли соединиться с внешней мембраной и выпустить порцию (квант) медиатора в синаптическую щель путем экзоцитоза. Одновременно в синапсе может опорожниться до сотен везикул. В кванте бывает от 102 до 105 молекул АХ.

Мишенью АХ в холинергическом синапсе является комплексная белковая молекула холинорецептор. Холинорецепторы, чувствительные к никотину, относят к типу Н-холинорецепторов, к мускарину – М-холинорецепторов (метаботропных). Н-холинорецепторы расположены (экспрессированы) на мембранах мышечных волокон скелетных мышц, нейронов ЦНС и симпатических ганглиев.

Н-холинорецептор, ионотропный, состоит из 5 (иногда 7) белковых субъединиц, одна из которых дублируется (αβαγδ). Общий размер (11×8,5 нм) молекулы вдвое больше толщины мембраны. Аминокислотная последовательность белков всех субъединиц установлена, она оказалась видоспецифичной, хотя различия у близких видов животных незначительны. Продублированные α –субъединицы обладают чувствительностью к лиганду. Холинорецептор можно рассматривать в качестве ионного канала, поскольку как интегральный мембранный белок он пронизывает клеточную мембрану и имеет центральную пору. Известны 2 состояния молекулы холинорецептора – закрытое и открытое. В открытом состоянии центральная пора холинорецепторы имеет размер около 0,7 нм, что достаточно для проникновения через нее одновалентных катионов, преимущественно Na+ и К+.

После связывания АХ с Н-холинорецептором и открытия поры через постсинаптическую мембрану течет ионный ток, обусловленный перемещением ионов Na+ и К+ по электрохимическим и концентрационным градиентам. Поскольку градиент для натрия направлен внутрь клетки, а для калия - наружу, при встречном их перемещении суммарный ток оказывается способным локально сместить мембранный потенциал до КУД в нервно-мышечном синапсе или вызвать значительную деполяризацию мембраны нейрона в нейро-нейрональном синапсе. Локальный ответ в виде деполяризации в данном случае носит название ПСП – постсинаптический потенциал, или ВПСП, возбуждающий постсинаптический потенциал. Прежде часто применялось название потенциал концевой пластинки (ПКП), для нервно-мышечного синапса.

Локальный ответ в виде ВПСП подчиняется законам проведения потенциалов по мембране и может быть распространен на небольшое расстояние из-за ограничений, накладываемых емкостными и резистивными свойствами мембраны – постоянной времени и постоянной длины. Поскольку на мембране нейрона или мышечного волокна имеется множество синапсов, ответ клетки всегда складывается из активности отдельных синаптических входов.

Суммация ПКП приводит к состоянию, когда мембранный потенциал смещается деполяризацией до КУД, происходит генерация ПД. В клетку по потенциалзависимым кальциевым каналам входит кальций, он участвует в механизме мышечного сокращения.

После того, как АХ выполнил роль сигнальной молекулы и запустил конформацию холинорецептора из закрытого в открытое состояние, необходимо подготовить систему к приему следующего сигнала. Поэтому постсинаптическая мемебрана располагает механизмом инактивации медиатора. В холинергичесом синапсе инактивация АХ достигается его энзиматическим расщеплением с помощью ацетилхолинэстеразы. В других типах синапсов инактивация проходит по-другому, например, норадреналин в адренергическом синапсе подвергается обратному поступлению (захвату) в пресинаптическое окончание.

Ацетилхолинэстераза может быть заблокирована, в таком случае каналы холинорецептора постоянно находятся в открытом состоянии и управление мышцами нарушается. Инсектицидные препараты типа «Прима», «Диклофос» имеют такой принцип действия, поэтому опасны не только для бытовых насекомых-вредителей, но и для теплокровных животных.

Этапы функционирования химической синаптической передачи.

1.Синтез, хранение и транспорт медиатора в везикулах.

2.Секреция медиатора при деполяризации пресинаптической мембраны и входе ионов кальция в окончание.

3.Реакция постсинаптитческой мемебраны в виде связывания медиатора рецептором и изменении проницаемости постсинаптической мембраны для катионов.

4.Генерация постсинаптических потенциалов.

5.Инактивация медиатора.

 

Возбуждающие химические синапсы, образованные на нейронах, весьма многочисленны, перемежаются с тормозными, никогда не обеспечивают по одиночке достижение мембраной КУД. Нейрон способен интегрировать синаптические сигналы и выдавать на выходе, в наиболее возбудимой части клетки, например, если это мотонейрон, в аксонном холмике, ПД после проведенного анализа поступивших по синаптическим входам ПСП.

В нейро-нейрональных синапсах не только АХ может быть медиатором, чаще всего возбуждающие аминокислоты глутамат и аспартат, норадреналин, нейропептиды, АТФ и NO выполняют функции медиаторов.

Глутаматная возбуждающая синаптическая нейропередача наиболее распространена в ЦНС. Рецепция глутамата в синапсах осуществляется NMDA и AMPA (ионотропными) рецепторами, синаптические механизмы в них очень сложны и до конца не раскрыты.

Из-за того, что процессы выделения и разрушения медиатора в синапсах имеют длительное время реализции, существует синаптическая задержка при функционировании нейронных сетей. Поэтому говорят, что химический синапс работает как частотный фильтр и обладает низкой лабильностью.

Поскольку сигналы от отдельных синапсов могут суммироваться и определять суммарный заряд мембраны, возможны явления тетанического синаптического облегчения и депрессии.

Свойства химического синапса.

1.Медленная скорость передачи сигнала, большая синаптическая задержка.

2.Одностороннее проведение сигнала от пре- к постсинаптической мембране, но не наоборот.

3.Высокая надежность передачи при нормальных условиях функционирования.

4.Существование следовых процессов (следовой деполяризации и гиперполяризации, что увеличивает возможности интегрирования сигналов нейроном).

 

Синапсы тормозного действия.

Синаптическим торможением называется такое влияние пресинаптической нервной клетки на постсинаптическую которое сопровождается устранением или предотвращением процесса возбуждения. Тормозных синапсов на нейронах ЦНС больше, чем возбуждающих.

Тормозные синапсы могут быть электрическими. По таким межклеточным контактам возможна передача электротонического сигнала, вызывающего гиперполяризацию постсинаптической мемебраны.

Структура химического синапса тормозного типа в общем плане соответствует таковой возбуждающего, на электронномикроскопическом снимке отличить их по видимым структурным особенностям трудно. Основными медиаторами тормозных синапсов являются ГАМК, глицин, но могут использоваться АХ и другие, встречающиеся и в «возбуждающих» синапсах.

Date: 2015-05-23; view: 687; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию