Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Синтез нуклеиновых кислот
СИНТЕЗ МОНОНУКЛЕОТИДОВ Для синтеза мононуклеотидов de novo необходимы очень простые вещества: CO2 и рибозо-5-фосфат (продукт 1-го этапа ГМФ-пути). Синтез происходит с затратой АТФ. Кроме этого, необходимы заменимые аминокислоты, которые синтезируются в организме, поэтому даже при полном голодании синтез нуклеиновых кислот не страдает. РОЛЬ АМИНОКИСЛОТ В СИНТЕЗЕ МОНОНУКЛЕОТИДОВ 1) Аспарагин. Является донором амидной группы.
2) Аспарагиновая кислота. а) Является донором аминогруппы б) Участвует в синтезе всей молекулой.
Глицин а) Является донором активного С1. б) Участвует в синтезе всей молекулой.
4) Серин. Является донором активного С1.
ПЕРЕНОС ОДНОУГЛЕРОДНЫХ ФРАГМЕНТОВ В организме человека существуют ферменты, которые могут извлекать из некоторых аминокислот С1-группу. Такие ферменты являются сложными белками. В качестве кофермента содержат производное витамина ВС – фолиевой кислоты. Фолиевой кислоты много в зеленых листьях, к тому же, этот витамин синтезируется микрофлорой кишечника. В клетках организма фолиевая кислота (ФК) дважды восстанавливается (к ней присоединяется водород) с участием фермента НАДФ.Н2-зависимой редуктазы, и превращается в тетрагидрофолиевую кислоту (ТГФК). Активный С1 извлекается из глицина или серина. В каталитическом центре фермента, содержащего ТГФК, имеются две –NH-группы, которые участвуют в связывании активного С1. Схематически процесс можно представить так: НАДН2, который образуется в обратной реакции, может быть использован для восстановления пирувата в лактат (гликолитическая оксидоредукция). Реакция катализируется ферментом глицинсинтетазой. После этого метилен-ТГФК отделяется от белковой части фермента, и затем возможны два варианта ее превращений: 1) Метилен-ТГФК может стать небелковой частью ферментов синтеза мононуклеотидов. 2) Метиленовая группировка может видоизменяться до: Эти группировки связаны только с одним из атомов азота ТГФК, но тоже могут стать субстратами для синтеза мононуклеотидов. Поэтому любая из группировок, связанная с ТГФК, называется активным С1.
Для синтеза любого из нуклеотидов требуется активная форма рибозо-фосфата - фосфорибозилпирофосфат (ФРПФ), образующаяся в следующей реакции: Фосфорибозилпирофосфаткиназа (ФРПФ-киназа) является ключевым ферментом для синтеза всех мононуклеотидов. Ингибируется этот фермент по принципу отрицательной обратной связи избытком АМФ и ГМФ. При генетическом дефекте ФРПФ-киназы наблюдается потеря чувствительности фермента к действию своих ингибиторов. В результате возрастает продукция пуриновых мононуклеотидов, а, значит, и скорость их разрушения, что приводит к увеличению концентрации мочевой кислоты – наблюдается подагра. После образования ФРПФ реакции синтеза пуриновых и пиримидиновых мононуклеотидов различны.
ПРИНЦИПИАЛЬНЫЕ РАЗЛИЧИЯ В СИНТЕЗЕ ПУРИНОВЫХ И ПИРИМИДИНОВЫХ МОНОНУКЛЕОТИДОВ: Особенностью синтеза пуриновых нуклеотидов является то, что циклическая структура пуринового азотистого основания постепенно достраивается на активной форме рибозо-фосфата, как на матрице. При циклизации получается уже готовый пуриновый мононуклеотид. При синтезе пиримидиновых мононуклеотидов сначала образуется циклическа структура пиримидинового азотистого основания, которая в готовом виде переносится на рибозу – на место пирофосфата.
СИНТЕЗ ПУРИНОВЫХ МОНОНУКЛЕОТИДОВ (АМФ и ГМФ)
Существует 10 общих и 2 специфических стадии. В результате общих реакций образуется пуриновый мононуклеотид, являющийся общим предшественником будущих АМФ и ГМФ – инозинмонофосфат (ИМФ). ИМФ в качестве азотистого основания содердит гипоксантин. Пуриновое кольцо строится из СО2, аспарагиновой кислоты, глутамина, глицина и серина. Эти вещества либо полностью включаются в пуриновую структуру, или передают для ее построения отдельные группировки. Аспарагиновая кислота отдает аминогруппу и превращается в фумаровую кислоту. Глицин: 1) полностью включается в структуру пуринового азотистого основания; 2) является источником одноуглеродного радикала. Серин: тоже является донором одноуглеродного радикала. ФРПФ + глутамин -------> глутамат + ФФ + фосфорибозиламин Фермент, который катализирует эту реакцию, называется фосфорибозиламидотрансфераза. Он является ключевым ферментом синтеза всех пуриновых мононуклеотидов. Регулируется по принципу отрицательной обратной связи. Аллостерическими ингибиторами этого фермента являются АМФ и ГМФ. На второй стадии фосфорибозиламин взаимодействует с глицином. Третья стадия - включение углеродного атома, донором которого является глицин или серин. Затем достраивается шестичленный фрагмент пуринового кольца: 4-ая стадия - карбоксилирование с помощью активной формы СО2 при участии витамина Н - биотина. 5-ая стадия - аминирование с участием аминогруппы из аспартата. 6-ая стадия - аминирование за счет аминогруппы глутамина. 7-ая, заключительная стадия - включение одноуглеродного фрагмента (с участием ТГФК), и образуется готовый ИМФ. Затем протекают специфические реакции, в результате которых ИМФ превращается либо в АМФ, либо в ГМФ. При таком превращении в молекуле появляется аминогруппа, причем в случае превращения в АМФ - на месте ОН-группы. При образовании АМФ источником азота является аспарагиновая кислота, а для образования ГМФ необходим глутамин. Далее из НМФ образуются НДФ и НТФ с помощью АТФ. Затраты АТФ на синтез нуклеотидов de novo очень велики. Этот способ синтеза является энергетически невыгодным. В некоторых тканях есть альтернативный способ синтеза – реутилизация (повторное использование) пуриновых азотистых оснований, которые образовались при распаде нуклеотидов.
Ферменты, катализирующие реакции реутилизации, наиболее активны в быстроделящихся клетках (эмбриональные ткани, красный костный мозг, раковые клетки), а также в тканях головного мозга. На схеме видно, что фермент гуанингипоксантинФРПФтрансфераза обладает более широкой субстратной специфичностью, чем аденинФРПФтрансфераза – помимо гуанина, может переносить и гипоксантин - образуется ИМФ. У человека встречается генетический дефект этого фермента - “болезнь Леша-Нихана”. Для таких больных характерны выраженные морфологические изменения в головном и костном мозге, умственная и физическая отсталость, агрессия, аутоагрессия. В эксперименте на животных синдром аутоагрессии моделируется путем скармливания им кофеина (пурина) в больших дозах, который ингибирует процесс реутилизации гуанина.
Date: 2015-05-22; view: 530; Нарушение авторских прав |