Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Порядок и беспорядок
Второе начало термодинамики в том виде, как его сформулировал Клаузиус, т.е. утверждение о том, что все происходящие в природе процессы вызывают увеличение энтропии, относится к физико-химическим процессам. К этим процессам относятся химические реакции, перенос тепла или вещества, диффузия и т.д. Все эти процессы увеличивают энтропию и не могут быть описаны в терминах обратимых преобразований, как в примере с колебаниями маятника. Каждая химическая реакция устанавливает некоторое различие между прошлым и будущим: она эволюционирует к равновесному состоянию, которое должно существовать в нашем будущем. Аналогичным образом в изолированной системе все неоднородности распределения температуры сглаживаются и в будущем распределение становится однородным. Таким образом, эволюция обретает весьма ограниченный смысл: она приводит к исчезновению порождающих ее причин. Можем ли мы принять какую-нибудь другую точку зрения? В действительности равновесие соответствует только вполне конкретной ситуации. Если мы наложим ограничения (т.е. будем нагревать одну границу системы и охлаждать другую), то помешаем системе достичь равновесия. Однако она может перейти в не зависящее от времени “стационарное состояние”, в котором энтропия системы не изменяется, несмотря на то, что производящая энтропию физико-химическая активность продолжается. Как нам определить стационарные состояния? Изменение энтропии со временем всегда можно разделить на вклады двух типов: “поток энтропии”, зависящий от обмена системы с окружающей средой, и “производство энтропии”, обусловленное необратимыми процессами внутри системы. Второе начало термодинамики требует, чтобы производство энтропии было положительным или обращалось в нуль при достижении системой равновесия. На поток энтропии второе начало не налагает никаких условий. Таким образом, в стационарном состоянии положительное производство энтропии компенсируется отрицательным потоком энтропии: активность, производящая энтропию, постоянно поддерживается за счет обмена с окружающей средой. Состояние равновесия соответствует частному случаю, когда и поток энтропии, и производство энтропии обращаются в нуль. Понятие стационарного состояния позволяет нам обособить активность системы по производству энтропии от равновесия, а этого уже достаточно для того, чтобы “развязать” старую ассоциацию между понятиями производства энтропии и молекулярного “беспорядка”. В качестве примера рассмотрим термодиффузию. В этом эксперименте берут два сосуда одинакового объема, соединяют их трубкой и заполняют смесью двух газов, например водорода и азота. Когда система находится в равновесии, мы обнаруживаем в обоих сосудах одну и ту же смесь газов. Выведем систему из состояния равновесия. Для этого создадим разность температур между сосудами. Чтобы поддерживать эту наложенную на систему связь, мы должны постоянно подогревать “горячий” сосуд, потому что поток тепла между “горячим” и “холодным” сосудами стремится выравнять разность температур. Следовательно, мы накладываем на систему отрицательный поток энтропии. Вместе с потоком тепла происходит процесс разделения двух газов. Когда система достигает своего стационарного состояния, т.е. когда температура и концентрация внутри системы перестают изменяться во времени, в горячем сосуде окажется больше водорода, а в холодном — больше азота, и разность концентраций будет пропорциональна созданной (наложенной на систему) разности температур. На этом простом примере мы можем видеть, что термодинамический процесс, удовлетворяющий второму началу, не может быть определен только в терминах Простого выравнивания разностей температур. Это утверждение осталось бы в силе и для потока тепла, но разделение двух газов создает различие: это процесс “антидиффузии”, измеряемый отрицательным вкладом в производство энтропии. Положительным остается только полное производство энтропии, включающее в себя потоки вещества и тепла. Таким образом, активность системы, связанная с производством энтропии, связана не только с выравниванием разностей (температур и т.д.), но и с созданием неоднородностей, “порядка”. Правда, за создание такого порядка нам приходится расплачиваться энтропией: чтобы поддерживать систему в ее стационарном состоянии, мы должны поддерживать ее обмен с окружающей средой. В нашем примере мы должны постоянно подогревать один из сосудов. “Беспорядок”, порождаемый тепловым потоком, мы можем рассматривать как цену, уплачиваемую за возможность создать порядок, в нашем примере — различие в составе газа в сосудах. Что мы имеем в виду, когда говорим о порядке? Что мы имеем в виду, когда говорим о беспорядке? Наши определения порядка и беспорядка включают в себя и культурные суждения, и науку. На протяжении долгого времени турбулентность в жидкости рассматривалась как прототип беспорядка. С другой стороны, кристалл принято было считать воплощением порядка. Но, как будет показано в этой главе, теперь мы вынуждены отказаться от подобной точки зрения. Турбулентная система “упорядочена”: движения двух молекул, разделенных макроскопическими расстояниями (измеряемыми в сантиметрах), остаются коррелированными. Верно и обратное утверждение: атомы, образующие кристалл, колеблются вокруг своих равновесных положений, причём колеблются несогласованным образом: с точки зрения мод колебаний (теплового движения) кристалл неупорядочен. Но пример термодиффузии поднимает еще один вопрос: о “цене”, которую приходится платить за создание порядка. Хотя кристалл может быть изолирован от окружающей среды, порядок в случае кристалла зависит от ни на миг не прекращающейся “упорядочивающей активности”, т.е. от процесса, производящего энтропию. Неудивительно, что порядок в случае живых организмов соответствует той же ситуации. Например, построение сложных биологических молекул становится возможным за счет разрушения других молекул в ходе метаболических процессов. Таким образом, мы имеем дело с взаимосвязанными процессами, соответствующими в целом положительному производству энтропии. Распространяется ли эта аналогия на такие области, в которых термодинамика не может служить для нас путеводной нитью, особенно в областях, затрагивающих взаимоотношения людей между собой или с природой? Взять хотя бы интенсификацию социальных отношений, которой способствует городская жизнь. Города являются и источниками загрязнения окружающей среды, и источником социальных, технических, художественных и интеллектуальных инноваций. Эта аналогия плодотворна, так как позволяет нам лучше понять то, что мы довольно часто пытались противопоставлять — порядок и беспорядок, хотя бессильна помочь нам в вынесении любого суждения относительно ценности создаваемого или уничтожаемого: такие суждения выходят за рамки собственно науки и касаются ответственности человека. Двойственный характер необратимых процессов, приводящих и к порядку, и к беспорядку, наглядно проявляется и в проблеме происхождения Вселенной, которую мы рассмотрим в гл. 11. В нашей Вселенной на каждую из массивных частиц приходится около 108 или 109 фотонов. Эти фотоны образуют “реликтовое излучение” абсолютно черного тела, о котором мы уже упоминали и которое обсудим в дальнейшем. Удивительно, но энтропия, связанная с реликтовым излучением, составляет основную часть энтропии Вселенной. Так как фотоны рождены на ранней стадии развития Вселенной, мы приходим к картине мира, сильно отличающейся от той, которая ассоциируется с интерпретацией Больцмана. Согласно новому взгляду на мир, Вселенная на ранней стадии своего развития должна была быть упорядоченной (т.е. энтропия ее должна была быть мала) и постепенно эволюционировать из такого крайне маловероятного начального состояния к тепловой смерти — состоянию с наибольшей вероятностью. Мы видим теперь, что рождение вселенной скорее всего сопровожда- лось чудовищным взрывом энтропии. Не стало ли возможным тогда рождение элементарных частиц, населяющих нашу Вселенную, именно благодаря столь интенсивному производству энтропии? В самом деле, элементарные частицы, например, барионы, обладают необычайно сложной структурой (в этом смысле было бы весьма непросто решить, чья структура сложнее — протона или молекулы ДНК). Если материю позволительно рассматривать как разновидность порядка, “оплачиваемого” ценой возрастания энтропии, то мы бы пришли к картине, прямо противоположной традиционной перспективе. Диссипативное становление, понимаемое отнюдь не как аппроксимация, оказалось бы у самых корней физического существования. Мы еще вернемся ко всем этим вопросам, а пока нам хотелось бы только подчеркнуть замечательный дуализм, который мы обнаруживаем в природе, — сосуществование равновесных ситуаций типа излучения абсолютно черного тела и высокоорганизованных объектов, одним из наиболее замечательных среди которых, по-видимому, является человеческий мозг с его 1011, связанных между собой нейронами. Порядок и беспорядок не могут быть поняты в терминах Больцмана: порядок как менее вероятное состояние, беспорядок как более вероятное состояние. И порядок, и беспорядок являются неотъемлемыми составными частями и продуктами коррелированных эволюционных процессов. Но вернемся к физической химии. Явление термодиффузии представляет собой линейный процесс: разность концентраций двух газов (в нашем примере — водорода и азота) пропорциональна разности температур сосудов. Но в других примерах мы встречаемся с неожиданными и весьма впечатляющими процессами, с новыми, качественно отличными типами функционирования, возникающими на вполне определенных интенсивностях потоков вещества или энергии, поддерживающих активность, связанную с производством энтропии. Тут мы вступаем в область сильно неравновесных “диссипативных структур” и диссипативного хаоса. Открытие диссипативных структур, т.е. структур, существующих лишь постольку, поскольку система диссипирует (рассеивает) энергию и, следовательно, производит энтропию, было совершенно неожиданным. Рассмотрим хорошо знакомый всем пример — отопление жилого дома зимой. При хорошей теплоизоляции отопление вообще можно выключить после того, как в помещениях установится желательная температура. Это — состояние равновесия. Но если в оконных рамах есть щели, то для поддержания баланса между потерями тепла и подводом тепла нам придется топить непрерывно. Такой тепловой баланс представляет собой стационарное состояние. Чем менее совершенна теплоизоляция, тем больше тепла придется подводить, т.е. тем дальше отходит система от равновесия. Здесь мы не ожидаем ничего нового: чем дальше мы отходим от равновесия, тем большую цену приходится нам платить за все большие теплопотери. Но так происходит не всегда. Для некоторых систем может быть установлен порог, начиная с которого поведение системы коренным образом изменяется. Под названием “диссипативные структуры” принято понимать организованное поведение, которое может при этом возникнуть, знаменуя поразительную взаимосвязь двух противоположных аспектов равновесной термодинамики: диссипации, обусловленной порождающей энтропию активностью, и порядка, нарушаемого, согласно традиционным представлениям этой, самой диссипацией. Исследованием диссипативных структур особенно интенсивно занимались две науки — гидродинамика и химическая кинетика. Рассмотрим сначала пример из гидродинамики — так называемую неустойчивость Бенара, Речь идет о следующей системе. В тонком слое жидкости поддерживается разность температур между нижней, подогреваемой, поверхностью и верхней поверхностью, которая находится при комнатной температуре. При малой разности температур, т.е. вблизи равновесия, перенос тепла осуществляется за счет теплопроводности, т.е. столкновений между молекулами. Выше определенного порога разности температур тепло переносится за счет конвекции, т.е. молекулы участвуют в коллективных движениях, соответствующих вихрям, разделяющим слой жидкости на регулярные “ячейки” — вихри Бенара. Возникновение коллективного движения означает спонтанное нарушение пространственной симметрии. Вблизи равновесия жидкость однородна, движение молекул некогерентно и хорошо описывается вероятностными законами. Но когда наступает неустойчивость Бенара, ситуация изменяется: в одной точке пространства молекулы поднимаются, в другой — опускаются как по команде. Однако никакой команды в действительности “не раздается”, поскольку в систему не вводится никакая новая упорядочивающая сила. Открытие диссипативных структур потому и вызвало столь сильное удивление, что в результате одной-единственной тепловой связи, наложенной на слой жидкости, одни и те же молекулы, взаимодействующие посредством слу- чайных столкновений, могут начать когерентное коллективное движение. Date: 2015-05-19; view: 655; Нарушение авторских прав |