Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Формула Рэлея-Джинса. Английские физики Д. Рэлей и Д
Английские физики Д. Рэлей и Д. Джинс на основе представлений классической физики, применив методы статистической физики, получили спектральную плотность энергетической светимости абсолютно чёрного тела: или , (7) удовлетворяющую условиям Вина. Здесь – скорость света в вакууме; – постоянная Больцмана. Рис.2. Зависимость спектральной плотности энергетической светимости от длины волны
Однако эта формула согласуется с экспериментальными результатами только в области больших длин волн (малых частот) (см. рис.2), и резко расходится с опытом для малых длин волн. Из рис.2 видно, что при малых длинах волн энергетическая светимость стремится к бесконечности. Этот результат, получивший название ультрафиолетовой катастрофы, находится в противоречии с опытом, что указывает на существование каких-то закономерностей, несовместимых с представлениями классической статистической физики и электродинамики. Формула Планка Немецкий физик М. Планк, исходя из предположения о квантовой природе света, получил согласующееся с опытными данными выражение для спектральной плотности энергетической светимости чёрного тела: . (8) Данное выражение называется формулой Планка для теплового излучения тел. Проанализируем формулу (8). 1. При малых частотах (больших длинах волн) (рис.3) , следовательно, . Получаем , т.е. формулу Рэлея-Джинса. 2. При больших частотах (коротких длинах волн) . Получаем , т.е. функцию, проходящую через максимум, согласующуюся с экспериментом. 3. Используя формулу Планка, можно получить закон Стефана-Больцмана: . (9) Сравнивая формулы (9) и (5), получаем теоретическое значение постоянной Стефана-Больцмана, которое хорошо согласуется с экспериментальными данными: . 4) Осуществим преобразования по формуле (3), т.е. перейдём от частоты к длине волны. Производную от функции Планка по длине волны приравниваем нулю, и получим выражение для закона смещения Вина: . (10) Таким образом, сравнивая формулы (10) и (6), получаем: . Подставляя в это выражение константы, получаем значение, совпадающее с экспериментальным.
Оптическая пирометрия, дистанционный, бесконтактный метод измерения температуры Для дистанционного измерения температуры тел используют пирометр. В качестве примера рассмотрим принцип работы пирометра с «исчезающей» нитью, принципиальная схема которого изображена на рис.4.
Пирометр наводится на светящийся объект (электрическая лампочка, пламя свечи, расплавленный металл в печи, Солнце, звезды и т.д.). Необходимо добиться резкого изображения спирали на фоне объекта. При изменении силы тока в цепи (с помощью реостата) происходит изменение степени накала спирали. Добиваясь того, чтобы нить спирали стала неразличимой на фоне объекта, получаем, что яркость спирали сравнялась с яркостью объекта. При совмещении яркостей, по шкале амперметра, которая предварительно была проградуирована в градусах, определяют яркостную температуру объекта, т.е. температуру его поверхности. С помощью поправок можно вычислить термодинамическую температуру исследуемого тела.
Date: 2015-05-19; view: 578; Нарушение авторских прав |