Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Физиология зрения
Мы начали говорить не только о цветовом зрении, но о зрении вообще только для того, чтобы напомнить о внутренних связях в сетчатке, показанных на фиг. 35.2. Сетчатка поистине напоминает поверхность мозга. Хотя настоящая картина под микроскопом выглядит несколько более сложно, чем этот схематический рисунок, но тем не менее при тщательном анализе можно увидеть все эти внутренние связи. Дело не в том, что одна часть сетчатки связана с другими частями и что информация, переданная по длинным аксонам, образующим зрительный нерв, представляет собой комбинированную информацию от многих клеток. Дело в том, что существуют три слоя клеток, функции которых следующие: во-первых, это фоторецепторы, на которые непосредственно действует свет, затем промежуточные клетки, которые принимают информацию от одного или нескольких фоторецепторов и снова отдают ее нескольким клеткам третьего слоя, а затем в мозг. Между клетками различных слоев существуют разнообразные перекрещивающиеся связи. Вернемся к некоторым аспектам строения и функции глаза (см. фиг. 35.1). Свет фокусируется главным образом роговицей, благодаря тому, что поверхность ее искривлена и она «загибает» лучи света. Вот почему под водой мы видим не так хорошо, ибо показатели преломления роговицы (1,37) и воды (1,33) разнятся недостаточно сильно. Позади роговицы находится практически водная среда с показателем преломления 1,33, а дальше — хрусталик, строение которого очень интересно: он состоит из целого ряда слоев, как луковица, с той только разницей, что эти слои прозрачные и показатель преломления их меняется от 1,40 в середине до 1,38 по краям. (Неплохо было бы изготовить линзу с необходимым показателем преломления в любом месте; тогда нам незачем было бы так искривлять ее, как это делается с линзой с постоянным показателем преломления.) Более того, форма роговицы вовсе не сферическая. Сферическая линза обладает известной сферической аберрацией. Наружная часть роговицы более «плоская», чем у сферы, причем как раз настолько, чтобы сферическая аберрация ее оказалась меньше аберрации той сферической линзы, которую мы поставили бы вместо нее! Посредством этой оптической системы роговица — хрусталик свет фокусируется на сетчатку. Если мы смотрим на близко расположенные или удаленные предметы, то хрусталик искривляется или выпрямляется, изменяя тем самым фокусное расстояние и настраиваясь на различную удаленность. Для регулирования общего количества света в глазе имеется радужная оболочка, или радужка, которая определяет «цвет» глаз — у кого карие, у кого голубые. При увеличении количества света оболочка сжимается и зрачок уменьшается, при уменьшении — оболочка расходится и зрачок увеличивается. Рассмотрим теперь изображенный на фиг. 36.3 нервный механизм, регулирующий аккомодацию хрусталика, движение глаза (способность глаза поворачивать глазное яблоко в глазнице) и диаметр зрачка. Основная часть всей информации попадает в зрительный нерв А, который разделяется на два пучка (о них мы еще будем говорить), и по ним идет в мозг. Однако имеется несколько волокон (именно они сейчас нам и интересны), которые не идут прямо в зрительную кору, где мы «видим» изображение, а вместо этого отправляются в средний мозг Н. Это как раз те волокна, по которым передается информация о средней освещенности и приказы о необходимом диаметре зрачка или, если изображение кажется расплывчатым, о кривизне хрусталика.
Если же изображение раздвоено, то по этим волокнам посылается приказ подрегулировать глаза для бинокулярного зрения. Во всяком случае, они проходят через центр мозга и возвращаются назад в глаз. Буквой K обозначены мышцы, которые управляют хрусталиком при аккомодации, а буквой L — ресничные мышцы. Радужка имеет две мышечные системы: 1) мышца, суживающая зрачок (циркулярная мышца) L; она работает очень быстро и связана непосредственно с мозгом коротким аксоном; 2) мышца, расширяющая зрачок (радиальная мышца), которая действует тогда, когда освещение предмета уменьшается и циркулярная мышца расслабляется. Как и во многих других частях тела, здесь тоже пара мышц работает в противоположных направлениях; почти в каждом таком случае управляющая ими нервная система «настроена» настолько точно, что, когда одной из них посылается приказ сжаться, другой автоматически посылается приказ расслабиться. Однако радужка представляет любопытное исключение: нервы, которые заставляют оболочку сжиматься, мы только что описали, но до сих пор никому точно не известно, откуда выходят нервы, заставляющие ее разжиматься. Они идут куда-то вниз, в спинной мозг в области грудной клетки, из спинного мозга вверх через шейный нервный узел, потом опять назад в голову и к другому концу радужки. Сигнал фактически проходит через совершенно другую нервную систему, не через центральную, а через симпатическую. Очень странно, для чего все это нужно. В глазе, как мы подчеркивали, имеется еще одна странность: светочувствительные клетки расположены в сетчатке в глубине, так что, прежде чем попасть в рецепторы, свет должен пройти через несколько слоев других клеток: сетчатка как бы вывернута наизнанку! В общем некоторые вещи в устройстве глаза кажутся нам великолепными, а некоторые — просто глупыми. На фиг. 36.4 показана связь глаза с частью мозга, наиболее непосредственно принимающей участие в процессе зрения.
Зрительные нервные волокна идут в некоторую область, лежащую сразу же за участком D, называемым латеральным коленчатым телом, а затем в участок мозга, называемый зрительной корой. Следует помнить, что от каждого глаза некоторые волокна направляются в другую половину мозга, так что представленная картина не полна. Зрительные нервы от левой части правого глаза проходят через зрительный перекрест B, тогда как нервы от левой части левого глаза обходят его сбоку. Таким образом, левая часть мозга получает всю информацию, идущую от левых сторон обоих глаз, т. е. правой стороны поля зрения, тогда как правая сторона мозга «видит» левую часть поля зрения. Вот каким способом происходит сложение информации от обоих глаз и определяется удаленность предмета. Такова система бинокулярного зрения. Очень интересны связи между сетчаткой и зрительной корой. Если мы в сетчатке каким-то образом возбудим или разрушим некоторую область, то умирает все волокно, поэтому мы можем узнать, куда оно идет, с чем оно связано. Самое интересное то, что между сетчаткой и зрительной корой, оказывается, существует однозначное соответствие: каждому пятну на сетчатке соответствует пятно в зрительной коре, и два рядом расположенных пятна на сетчатке окажутся рядом и в зрительной коре. Так что зрительная кора, кроме всего прочего, отражает и пространственное расположение палочек и колбочек, хотя и очень искаженно. Предметы, находящиеся в центре поля зрения и занимающие очень мало места на сетчатке, в зрительной коре распространяются на очень много клеток. Ясно, что очень важно, чтобы первоначально расположенные близко предметы оказались так же близко расположенными и в зрительной коре. Однако самое интересное здесь вот что. Участок, который, казалось бы, наиболее важен для близко расположенных предметов, находится как раз в середине поля зрения. Поистине невероятно, но прямая вертикальная линия в середине поля зрения обладает тем свойством, что информация, полученная от всех точек, расположенных справа от нее, поступает в левое полушарие мозга, а информация от точек, расположенных слева,— в правое полушарие. Но прямо посредине проходит граница, так что предметы, которые очень близки и расположены в середине по разные стороны от границы, в мозге оказываются очень далекими! Информация через какие-то другие каналы все же как-то проходит из одной стороны мозга в другую, и это очень странно. Очень интересно, как все это связывается вместе. Вопрос о том, что уже связано и что еще нужно научиться связывать, довольно стар. Прежде думали, что, по-видимому, никаких врожденных связей вообще нет; имеются только какие-то грубые наметки, и лишь потом на опыте еще в детстве постигают, что когда предмет находится «вон там», то это дает такое-то ощущение. (Врачи постоянно уверенно заявляют о том, что чувствуют маленькие дети, но откуда сами они знают, что чувствует годовалый ребенок?) Может быть, годовалый ребенок, видя предметы «вон там», испытывает какое-то чувство и учится протягивать руку именно «туда», потому что когда он протягивает ее «сюда», то схватить предмет не удается. Но, по-видимому, этот подход все же неверен, ибо, как мы уже видели, во многих случаях такие специфические промежуточные связи существуют уже с рождения. Более показательны в этом отношении замечательные опыты над саламандрами. (К счастью, у саламандры имеется прямая перекрестная связь без зрительного перекреста, поскольку у нее глаза расположены по бокам головы и поля зрения обоих глаз не перекрываются. Саламандрам поэтому бинокулярное зрение ни к чему.) Опыты эти состоят в следующем. Мы можем перерезать зрительный нерв у саламандры, но он, однако, снова начнет расти из глаз. Так будут восстанавливаться сами собой тысячи и тысячи клеток. И хотя волокна зрительных нервов не будут лежать рядом (они теперь напоминают большой небрежно изготовленный телефонный кабель, все волокна которого перекручены и перепутаны), однако, достигнув мозга, они снова расположатся в надлежащем порядке. Когда перерезают зрительный нерв саламандры, то возникает вопрос: восстанавливается ли он снова? Да, восстанавливается. Таков замечательный ответ. Если саламандре перерезать зрительный нерв, то он снова вырастает и она будет видеть ничуть не хуже, чем раньше. Однако если мы перережем зрительный нерв и перевернем глаз, а потом оставим его в покое, то нервы снова вырастут и саламандра прозреет, но теперь она будет совершать ужасные ошибки: увидев муху вверху, саламандра прыгнет вниз, и она уже никогда не сможет «выучиться» действовать правильно. Так что каким-то непостижимым образом тысячи и тысячи клеток нервных волокон находят в мозге свое истинное место. Проблема связей в мозге, т. е. в какой степени все там связано и в какой нет,— важнейшая проблема в теории развития живых существ. Ответ еще неизвестен, но его интенсивно ищут. Аналогичный опыт с золотой рыбкой приводит к тому же результату: в том месте, где мы перережем нерв, образуется страшный узел, подобно большому шраму или опухоли, и, несмотря на все это, волокна снова «прорастут» в мозг к своему истинному месту. Для того чтобы это произошло, волокна, поскольку они растут по старому каналу зрительного нерва, «должны решать», в каком направлении расти. Но как им удается это делать? Возможно, что здесь работает какой-то химический механизм, который по-разному действует на разные волокна. Подумать только, сколь огромно число растущих волокон и каждое из них как-то, по-своему отличается от соседних; реагируя на какой-то химический механизм, оно делает это достаточно однозначно, чтобы отыскать свое истинное место среди окончательных связей в мозге! Это поразительно, фантастично! Это одно из величайших явлений, открытых биологами за последнее время, и оно, несомненно, связано со многими старыми нерешенными проблемами роста, организации и развития организма, особенно зародыша. Другое интересное явление связано с движением глаза. Чтобы добиться совпадения двух изображений, глаз должен обладать способностью двигаться. Эти движения могут быть разного рода: когда мы следим за чем-то, оба глаза должны поворачиваться одновременно в одном направлении — вправо или влево; когда мы следим за удаляющимся или приближающимся предметом, глаза должны двигаться в противоположных направлениях. Нервы, подходящие к мышцам глаза, как раз приспособлены для этих целей. Одни нервы заставляют наружные мышцы, например левого глаза и внутренние мышцы правого, сокращаться, а противоположные мышцы — расслабляться, так что оба глаза движутся в одну сторону. Но есть и другие центры, возбуждение которых заставляет глаза двигаться навстречу друг другу. Любой глаз может быть скошен в уголок, если второй при этом движется к носу, но совершенно невозможно сознательно или несознательно одновременно повернуть оба глаза в разные стороны, и вовсе не потому, что нет мышц, способных сделать это, а потому, что нет способа послать такие сигналы, чтобы оба глаза отвернулись в разные стороны. (Разумеется, если не произошло никакого нарушения, например не перерезан нерв.) И хотя мышцы одного глаза вполне могут поворачивать его как угодно, даже йоги никаким усилием воли не могут повернуть оба глаза в разные стороны. Просто потому, что нет никакой возможности сделать это. В какой-то мере мы уже скованы от рождения. Это очень важный пункт, ибо большинство прежних книг по анатомии и психологии не признавало или не замечало того факта, что мы в такой степени скованы с самого рождения; они утверждали, что можно всему научиться. Date: 2015-05-19; view: 438; Нарушение авторских прав |