Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Открытие сделано. Что дальше?





Вернёмся, в качестве рабочей гипотезы, к минимальной версии теории — Стандартной модели с одним элементарным бозоном Хиггса. Поскольку в этой теории именно поле (точнее, поля) Энглера — Браута — Хиггса даёт массы всем элементарным частицам, взаимодействие каждой из этих частиц с бозоном Хиггса жёстко фиксировано. Чем больше масса частицы, тем сильнее взаимодействие; чем сильнее взаимодействие, тем более вероятен распад бозона Хиггса на пару частиц данного сорта. Распады бозона Хиггса на пары реальных частиц tt̃, ZZ и W+W– запрещены законом сохранения энергии. Он требует, чтобы сумма масс продуктов распада была меньше массы распадающейся частицы (опять вспоминаем Е = mс2), а у нас, напомним, mн ≈ 125 ГэВ, mt = 173 ГэВ, mz = 91 ГэВ и mw = 80 ГэВ. Следующим по массе стоит b-кварк с mb = 4 ГэВ, и именно поэтому, как мы говорили, бозон Хиггса охотнее всего распадается на пару bb̃. Интересен и распад бозона Хиггса на пару довольно тяжелых τ-лептонов H → τ+τ (mτ = 1,8 ГэВ), происходящий с вероятностью 6%. Распад H → μ+μ (mµ = 106 МэВ) должен происходить с ещё меньшей, но всё же неисчезающей вероятностью 0,02%. Помимо обсуждавшихся выше распадов H → γγ; H → 4ℓ и H → 2ℓ2ν, отметим распад H → Zγ, вероятность которого должна составлять 0,15%. Все эти вероятности можно будет измерить на LHC, и любое отклонение от этих предсказаний будет означать, что наша рабочая гипотеза — Стандартная модель — неверна. И наоборот, согласие с предсказаниями Стандартной модели будет всё больше и больше убеждать нас в её справедливости.

То же можно сказать и о рождении бозона Хиггса в столкновениях протонов. Бозон Хиггса может рождаться в одиночку при взаимодействии двух глюонов, вместе с парой лёгких кварков высоких энергий, вместе с одним W- или Z-бозоном или, наконец, вместе с парой tt̃. Частицы, рождающиеся вместе с бозоном Хиггса, можно детектировать и отождествлять, поэтому разные механизмы рождения можно изучать на LHC по отдельности. Тем самым удаётся извлекать информацию о взаимодействии бозона Хиггса с W±-, Z-бозонами и t-кварком.

Наконец, важное свойство бозона Хиггса — его взаимодействие с самим собой. Оно должно проявляться в процессе Н* → НН, где Н* — виртуальная частица. Cвойства этого взаимодействия тоже однозначно предсказывает Стандартная модель. Впрочем, его изучение — дело отдалённого будущего.

Итак, на LHC имеется обширная программа исследования взаимодействий нового бозона. В результате её выполнения станет более или менее ясно, описывает ли природу Стандартная модель или мы имеем дело с какой-то другой, более сложной (а возможно, и более простой) теорией. Дальнейшее продвижение связано с существенным повышением точности измерений; оно потребует строительства нового электрон-позитронного ускорителя — е+е-коллайдера с рекордной для такого типа машин энергией. Очень может быть, что на этом пути нас поджидает масса сюрпризов.

Вместо заключения: в поисках «новой физики»

С «технической» точки зрения Стандартная модель внутренне непротиворечива. То есть в её рамках можно — хотя бы в принципе, а как правило, и на практике — вычислить любую физическую величину (разумеется, относящуюся к тем явлениям, которые она призвана описывать), и результат не будет содержать неопределённостей. Тем не менее многие, хотя и не все, теоретики считают положение дел в Стандартной модели, мягко говоря, не вполне удовлетворительным. И связано это в первую очередь с её энергетическим масштабом.

Как ясно из предыдущего, энергетический масштаб Стандартной модели имеет порядок Mсм = 100 ГэВ (мы здесь не говорим о сильных взаимодействиях с масштабом 1 ГэВ, с ним всё проще). Это — масштаб масс W±- и Z-бозонов и бозона Хиггса. Много это или мало? С экспериментальной точки зрения — изрядно, а вот с теоретической...

В физике имеется ещё один масштаб энергий. Он связан с гравитацией и равен массе Планка Mpl = 1019 ГэВ. При низких энергиях гравитационные взаимодействия между частицами пренебрежимо малы, но они усиливаются с ростом энергии, и при энергиях порядка Mpl гравитация становится сильной. Энергии выше Mpl — это область квантовой гравитации, что бы она собой ни представляла. Для нас важно, что гравитация — пожалуй, самое фундаментальное взаимодействие и гравитационный масштаб Mpl — самый фундаментальный масштаб энергий. Почему же тогда масштаб Стандартной модели Мсм = 100 ГэВ так далёк от Mpl = 1019 ГэВ?

У обозначенной проблемы есть ещё один, более тонкий аспект. Он связан со свойствами физического вакуума. В квантовой теории вакуум — основное состояние природы — устроен весьма нетривиально. В нём всё время рождаются и уничтожаются виртуальные частицы; иными словами, образуются и исчезают флуктуации полей. Непосредственно наблюдать эти процессы мы не можем, но они оказывают влияние на наблюдаемые свойства элементарных частиц, атомов и т.д. Например, взаимодействие электрона в атоме с виртуальными электронами и фотонами приводит к наблюдаемому в атомных спектрах явлению — лэмбовскому сдвигу. Другой пример: поправка к магнитному моменту электрона или мюона (аномальный магнитный момент) тоже обусловлена взаимодействием с виртуальными частицами. Эти и подобные эффекты вычислены и измерены (в указанных случаях с фантастической точностью!), так что мы можем быть уверены, что имеем правильную картину физического вакуума.

В этой картине все параметры, изначально заложенные в теорию, получают поправки, называемые радиационными, за счет взаимодействия с виртуальными частицами. В квантовой электродинамике они малы, а вот в секторе Энглера — Браута — Хиггса они огромны. Такова особенность элементарных скалярных полей, составляющих этот сектор; у других полей этого свойства нет. Главный эффект здесь состоит в том, что радиационные поправки стремятся «подтянуть» энергетический масштаб Стандартной модели Mсм к гравитационному масштабу Mpl. Если оставаться в рамках Стандартной модели, то единственный выход — подобрать изначальные параметры теории так, чтобы вместе с радиационными поправками они приводили к правильному значению Mсм. Однако выясняется, что точность подгонки должна составлять величину, близкую к Mсм2/Mpl2 = 10-34! В этом и состоит второй аспект проблемы энергетического масштаба Стандартной модели: представляется неправдоподобным, что такая подгонка имеет место в природе.

Многие (хотя, повторим, не все) теоретики считают, что эта проблема однозначно свидетельствует о необходимости выхода за рамки Стандартной модели. Действительно, если Стандартная модель перестаёт работать или существенно расширяется на энергетическом масштабе «новой физики — НФ» Mнф, то требуемая точность подгонки параметров составит, грубо говоря, М2см2нф, а на самом деле порядка на два меньше. Если считать, что тонкой подстройки параметров в природе нет, то масштаб «новой физики» должен лежать в области 1—2 ТэВ, то есть как раз в области, доступной для исследования на Большом адронном коллайдере!

Какой могла бы быть «новая физика»? Единства у теоретиков по этому поводу нет. Один вариант — составная природа скалярных полей, обеспечивающих спонтанное нарушение симметрии, о котором уже говорилось. Другая, тоже популярная (пока?) возможность — суперсимметрия, о которой скажем только, что она предсказывает целый зоопарк новых частиц с массами в области сотен ГэВ — нескольких ТэВ. Обсуждаются и весьма экзотические варианты вроде дополнительных измерений пространства (скажем, так называемая М-теория — см. «Наука и жизнь» №№ 2, 3, 1997 г., статья «Суперструны: на пути к теории всего». — Прим. ред.).

Несмотря на все усилия, до сих пор никаких экспериментальных указаний на «новую физику» не получено. Это, вообще-то, уже начинает внушать тревогу: а правильно ли мы всё понимаем? Вполне возможно, впрочем, что мы ещё не добрались до «новой физики» по энергии и по количеству набранных данных и что именно с ней будут связаны новые, революционные открытия. Основные надежды здесь возлагают опять-таки на Большой адронный коллайдер, который через полтора года начнёт работать на полную энергию 13—14 ТэВ и быстро набирать данные. Следите за новостями!

***

Date: 2015-05-19; view: 297; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию