Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Гейзенберг и принцип неопределённости

Принцип неопределённости Гейзенберга утверждает, что физические характеристики объектов микромира (положения частиц, их скорости, энергии, моменты импульса и т. д.) образно говоря, можно разделить на два списка, A и B. И, как установил Гейзенберг, знание первой характеристики из списка A в корне ограничивает вашу возможность установить величину первой характеристики из списка B; знание второй характеристики из списка A в корне ограничивает вашу возможность установить величину второй характеристики из списка B и т. д. Более того, чем точнее вы знаете какую-то характеристику из первого списка, тем менее точно вы будете знать величину соответствующей характеристики из второго списка. Принципиальная невозможность определить одновременно все характеристики из обоих списков (т. е. точно определить величины всех характеристик микромира) и есть та неопределённость, что вскрывается принципом Гейзенберга.

Например, чем точнее мы знаем, где находится частица, тем менее точно мы можем установить её скорость. Аналогично, чем точнее мы знаем, с какой скоростью движется частица, тем с меньшей точностью мы можем определить, где она находится. Таким путём квантовая теория устанавливает собственный дуализм: мы можем точно определить некоторые физические характеристики микромира, но тем самым вы лишаетесь возможности точно установить ряд других характеристик, дополнительных первым.

Чтобы понять, почему это так, посмотрим, какую картину рисовал сам Гейзенберг; эта картина достаточно груба и неполна в отдельных аспектах, но полезна с точки зрения интуитивного понимания. Когда мы измеряем положение любого объекта, мы тем или иным образом взаимодействуем с ним. Когда летучая мышь охотится, она испускает ультразвуковые волны и по их отражению судит об окружающем её пространстве. Чаще всего мы определяем положение объекта, глядя на него ‑ воспринимая свет, отражённый от объекта и попадающий на сетчатку наших глаз. Самое главное в этих примерах заключается в том, что эти взаимодействия влияют не только на нас, но и на объект, положение которого определяется. Даже свет, отражаясь от объекта, немного толкает его. Конечно, на вещи, с которыми мы сталкиваемся в повседневной жизни, микроскопический толчок от отражённого света не оказывает сколько-нибудь заметного влияния. Но когда свет сталкивается с элементарной частицей вроде электрона, он оказывает на неё большое воздействие: отскакивая от электрона, свет изменяет его скорость примерно так же, как ваше движение меняется под порывом сильного ветра, налетевшего из-за угла улицы. В действительности, чем точнее мы хотим определить положение электрона, тем более сфокусированным и мощным должен быть луч света и тем большее влияние он окажет на движение электрона.

Значит, если мы с высокой точностью измеряем положение электрона, мы неизбежно портим собственный эксперимент: акт точного измерения положения сильно изменяет скорость электрона. Поэтому мы можете точно узнать, где находится электрон, но не можем точно узнать, с какой скоростью он в этот момент двигается. И наоборот, мы можем точно измерить, с какой скоростью движется электрон, но, делая это, мы неизбежно лишаем себя возможности точно определить его положение в тот же момент времени. Природа имеет свой предел точности, накладывающий ограничение на точность определения дополнительных друг другу характеристик. И хотя мы всё время говорим об электронах, принцип неопределённости носит всеобщий характер: он применим ко всему.

В повседневной жизни мы запросто говорим о том, к примеру, что автомобиль проехал дорожный знак (положение) на скорости 90 км/ч (скорость), одновременно определяя две эти характеристики. В действительности квантовая механика говорит о том, что такое утверждение не имеет точного смысла, поскольку невозможно одновременно измерить и определённое положение и определённую скорость. Причина, по который мы не считаемся с такой неточностью, состоит в том, что на повседневном уровне степень неопределённости ничтожна и практически всегда незаметна. Принцип Гейзенберга не просто декларирует неопределённость, но и точно определяет минимальную величину неопределённости в любой ситуации. Если вы примените формулу Гейзенберга к определению скорости вашего автомобиля в тот момент, когда он проезжает мимо дорожного знака, положение которого известно с точностью до сантиметра, то неопределённость в скорости не выйдет за пределы одной миллиардной от миллиардной от миллиардной от миллиардной километра в час. Слова автоинспектора будут полностью соответствовать законам квантовой физики, если он заявит, что вы пронеслись мимо дорожного знака на скорости между 89,999999999999999999999999999999999999 и 90,000000000000000000000000000000000001 км/ч ‑ принцип неопределённости накладывает только такое ограничение на определение скорости, если положение автомобиля определяется с точностью до сантиметра. Но если вместо массивного автомобиля рассмотреть единственный электрон, чьё положение вы знаете с точностью до одной миллиардной метра, то неопределённость его скорости составит величину порядка 300 000 км/ч. Неопределённость есть всегда, но становится действительно существенной только в микромире.

Объяснение неопределённости как проявления неизбежного возмущения, возникающего в ходе измерений, даёт полезное интуитивное понимание и мощное средство объяснения явлений в конкретных ситуациях. Но это объяснение может и вводить в заблуждение. Оно может породить впечатление, что неопределённость возникает только когда наши эксперименты вмешиваются в происходящее. Это неверно. Неопределённость присуща волновой природе квантовой механики и существует независимо от того, проводим ли мы свои грубые измерения. В качестве примера взглянем на совсем простую вероятностную волну частицы, аналог мягко перекатывающейся океанской волны, показанную на рисунке.

Рисунок ‑ Волна вероятности с точно повторяющейся последовательностью одинаковых гребней и впадин соответствует частице с точно определённой скоростью. Но поскольку все гребни и впадины совершенно одинаковы, то положение частицы оказывается совершенно неопределённым. С равной вероятностью она может быть где угодно

Поскольку все гребни этой волны одинаково двигаются в одном направлении, можно предположить, что эта волна описывает частицу, двигающуюся с постоянной скоростью, равной скорости гребней волны; эксперимент подтверждает это предположение. Но где же находится частица? Поскольку волна однородно распределена по всему пространству, то нет никаких выделенных точек, и у нас нет никаких оснований утверждать, что электрон находится где-то здесь или там. В результате измерения он может быть найден буквально где угодно. Итак, хотя мы точно знаем, с какой скоростью двигается частица, мы совершенно не знаем, где она находится. И, как видно, это заключение не зависит от того, что своими измерениями мы повлияли на частицу. Мы к ней даже не прикоснулись. Так что неопределённость зависит от фундаментальных свойств волн: они являются протяжёнными в пространстве.

Важный вопрос, заключается в том, отражает ли принцип неопределённости то, что мы можем знать о реальности, или саму реальность? Имеют ли все объекты Вселенной на самом деле определённое положение и скорость, как мы себе обычно представляем в повседневной жизни (взлетающий бейсбольный мяч, бегун на дорожке, подсолнух, медленно поворачивающийся вслед за Солнцем), но квантовая неопределённость говорит нам, что в принципе невозможно знать эти характеристики одновременно? Или же квантовая неопределённость полностью разрушает наши классические представления, утверждая, что неверен классический перечень атрибутов, приписываемый нами реальности, и начинающийся с положения и скорости объектов? Говорит ли квантовая неопределённость о том, что в любой заданный момент времени частицы просто не имеют определённого положения и определённой скорости?

Посредством принципа неопределённости Гейзенберга квантовая механика утверждает, что в мире есть характеристики ‑ такие как положение и скорость частицы или спин частицы относительно различных осей, ‑ которые не могут одновременно иметь определённые значения. Согласно квантовой механике частица не может одновременно иметь определённое положение и определённую скорость; частица не может иметь определённый спин (по часовой стрелке или против часовой стрелки) относительно более чем одной оси одновременно; частица не может иметь одновременно определённые значения характеристик, которые находятся по разные стороны от черты, проведённой принципом неопределённости. Частицы как бы подвешены в состоянии квантовой неопределённости, парят в размытой, вероятностной смеси всех возможностей; и только в ходе измерения из множества возможностей выбирается один определённый вариант. Эта картина реальности радикально отличается от той, которую рисовала классическая физика.

Хотя квантовая механика показывает, что частицы случайным образом выбирают те или иные величины во время измерения, эти случайности могут быть связаны друг с другом через пространство. Пары частиц ‑ они называются запутанными частицами ‑ выбирают свои характеристики не независимо друг от друга. Запутанные частицы, даже когда они пространственно разделены, не действуют автономно.

Согласно стандартной квантовой механике, проводя измерение и обнаруживая частицу в каком-то месте, мы тем самым вынуждаем волну вероятности измениться: весь диапазон возможных исходов сводится к одному конкретному результату, полученному в ходе измерения. Физики говорят, что акт измерения заставляет коллапсироватъ волну вероятности, и они предсказывают, что чем больше волна вероятности в какой-то выбранной точке, тем больше шансов, что волна сколлапсирует к этой точке, т. е. с тем большей вероятностью частица будет обнаружена именно в этой точке. В стандартной трактовке коллапс происходит мгновенно во всей Вселенной: как только вы где-то обнаружили частицу, так вероятность её обнаружения в любом другом месте сразу же падает до нуля, и это отражается в немедленном коллапсе волны вероятности.

 


<== предыдущая | следующая ==>
Электромагнитное поле - защита | Могущественные силы Вселенной

Date: 2015-05-18; view: 431; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию