Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Операторы для физических величин
В квантовой механике устанавливается правило, позволяющее находить волновую функцию, описывающую то состояние системы, в котором данная физическая величина (или набор величин) имеет определенное значение. Для этого каждой физической величине сопоставляется свой оператор так, чтобы его собственные значения давали возможные значения этой величины; тогда его собственные функции будут описывать соответствующие состояния системы. Так, например, операторы для составляющих количество движения имеют вид: (7)
Функция (6), описывающая то состояние частицы, в котором ее количество движения имеет значения рx, py, pz , удовлетворяет уравнениям Px ψ=рxψ; Py ψ= pyψ; Pz ψ=pzψ, (8) т. е. она представляет собой собственную функцию операторов (7). Дальнейший важный пример представляет предложенный Шредингером оператор энергии частицы массы m в поле с потенциальной энергией U(x, у, z). Этот оператор составлен по образцу классической функции Гамильтона H = (1/2 m)(P2x + P2y + P2z) + U(x,y,z), (9) И имеет вид (10)
Н = (- h' 2/2 m)Δ + U, (11) где Δ —оператор Лапласа. Применяя формулированное выше общее правило к энергии системы, состоящей из одной частицы, приходим к уравнению Шредингера - (h' 2/2 m) Δψ + U ψ = E ψ (12) определяющему уровни энергии и стационарные состояния такой системы. Для системы, состоящей из многих частиц (например, для многоэлектронного атома), оператор энергии также строится по образцу классической функции Гамильтона. Однако в этом случае необходимо учесть также свойства симметрии волновой функции относительно перестановок координат одинаковых частиц (электронов). (См. об этом § 14.) По классическому образцу строятся также некоторые другие операторы, например операторы для орбитального момента количества движения электрона: Mx = yP z - zP y; My =zP x - xP z; Mz = xPy - yPx (13) Но общих правил составления операторов для физических величин указать нельзя. Надлежащий выбор операторов позволяет описывать и такие свойства атомных объектов, какие вообще не могут быть описаны на языке классической физики. К числу таких свойств относится неизвестная классической физике внутренняя степень свободы электрона, представляющая некоторую ана- логию с собственным моментом количества движения иназываемая спином. Эта степень свободы проявляется особенно заметно в поведении электронов в магнитном поле и в особого рода взаимодействии электронов между собой, выражаемом принципом Паули. К этому вопросу мы вернемся в § 14. Сопоставление операторов физическим величинам позволяет выразить в математической форме требование, чтобы физические условия, необходимые для одновременного измерения двух величин, были совместны. Это требование означает возможность такого состояния, в котором обе эти величины имеют определенные значения; для этого необходимо, чтобы существовала общая собственная функция соответствующих операторов Последнее условие будет во всяком случае выполняться, если результат применения этих двух операторов к любой функции не будет за висеть от их порядка (т. е если оба оператора коммутируют). Если же, наоборот, независимость от порядка применения операторов не имеет места ни для какой функции, то это значит, что условия для измерения той и другой величины друг друга исключают В качестве примера рассмотрим операторы для одноименных составляющих радиус-вектора и количества движениячастицы.Имеем для любой функции ψ. Иначе говоря, хРx — Рx х =ih'. (14) Следовательно, данные операторы не коммутируют, иусловия для точного измерения координаты и количества движения несовместны, как это и должно быть в силу неравенств Гейзенберга. Можно показать, что неравенства Гейзенберга вытекают из соотношений вида (14) и из выражения для вероятностей через волновую функцию Таким образом, описание состояния системы посредством волновой функции автоматически учитывает возможности измерения. Date: 2015-05-18; view: 471; Нарушение авторских прав |