Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Геометрические аберрации
Геометрические аберрации оптических систем характеризуют несовершенство оптических систем в монохроматичном свете. Происхождение аберраций оптических систем можно понять, рассмотрев прохождение лучей через центрированную оптическую систему L (рис. 1). - плоскость предмета, - плоскость изображений, и - соответственно плоскости входного и выходного зрачков.
В идеальной оптической системе все лучи, испускаемые какой-либо точкой предмета, находящейся в меридиональной плоскости на расстоянии от оси, пройдя через систему, собрались бы снова в одну точку . В реальной оптической системе эти лучи пересекают плоскость изображения в разных точках. При этом координаты точки В пересечения луча с плоскостью изображения зависят от направления луча и определяются координатами точки А пересечения с плоскостью входного зрачка. Отрезок характеризует несовершенство изображения, даваемого данной оптической системой. Проекции этого отрезка на оси координат равны и и характеризуют поперечную аберрацию. В заданной оптической системе и являются функциями координат падающего луча : и . Считая координаты малыми, можно разложить эти функции в ряды по , и . Линейные члены этих разложений соответствуют параксиальной оптике, следовательно коэффициенты при них должны быть равными нулю; чётные степени не войдут в разложение ввиду симметричности оптической системы; таким образом остаются нечётные степени, начиная с третьей; аберрации 5-го порядка (и выше) обычно не рассматривают, поэтому первичные аберрации оптической системы называют аберрациями 3-го порядка. После упрощений получаются следующие формулы. (*) Коэффициенты зависят от характеристик оптической системы (радиусов кривизны, расстояний между оптическими поверхностями, показателей преломления). Обычно классификацию аберраций оптических систем проводят, рассматривая каждое слагаемое в отдельности, полагая другие коэффициенты равными нулю. При этом для наглядности представления об аберрации рассматривают семейство лучей, исходящих из точки-объекта и пересекающих плоскость входного зрачка по окружности радиуса р с центром на оси. Ей соответствует определённая кривая в плоскости изображений, а семейству концентрических окружностей в плоскости входного зрачка радиусов и так далее соответствует семейство кривых в плоскости изображений. По расположению этих кривых можно судить о распределении освещённости в пятне рассеяния, вызываемом аберрацией. Сферическая аберрация соответствует случаю, когда , а все другие коэффициенты равны нулю. Из выражения (*) следует, что эта аберрация не зависит от положения точки С в плоскости объекта, а зависит только от координаты точки А в плоскости входного зрачка, а именно, пропорциональна . Распределение освещённости в пятне рассеяния таково, что в центре получается острый максимум при быстром уменьшении освещённости к краю пятна. Сферическая аберрация - единственная геометрическая аберрация, остающаяся и в том случае, если точка-объект находится на главной оптической оси системы. Кома определяется выражениями при коэффициенте В. Равномерно нанесённым на входном зрачке окружностям соответствуют в плоскости изображения семейства окружностей (рис. 2) с радиусами, увеличивающимися как , центры к-рых удаляются от параксиального изображения также пропорционально Огибающей этих окружностей (каустикой) являются две прямые, составляющие угол 60°. Изображение точки при наличии комы имеет вид несимметричного пятна, освещённость которого максимальна у вершины фигуры рассеяния и вблизи каустики. Кома отсутствует на оси центрированных оптических систем. Астигматизм и кривизна поля соответствуют случаю, когда не равны нулю коэффициенты С и D. Из выражения (*) следует, что эти аберрации пропорциональны квадрату удаления точки-объекта от оси и первой степени радиуса отверстия. Астигматизм обусловлен неодинаковой кривизной оптической поверхности в разных плоскостях сечения и проявляется в том, что волновой фронт деформируется при прохождении оптической системы, и фокус светового пучка в разных сечениях оказывается в разных точках. Фигура рассеяния представляет собой семейство эллипсов с равномерным распределением освещённости. Существуют две плоскости - меридиональная и перпендикулярная ей сагиттальная, в которых эллипсы превращаются в прямые отрезки. Центры кривизны в обоих сечениях называются фокусами, а расстояние между ними является мерой астигматизма. Пучок параллельных лучей, падающих на оптическую систему под углом (рис. 3), в меридиональном сечении имеет фокус в точке m, а в сагиттальном - в точке s. С изменением угла положения фокусов m и s меняются, причём геометрические места этих точек представляют собой поверхность вращения MOM и SOS вокруг главной оси системы. На поверхности КОК, находящейся на равных расстояниях от MOM и SOS, искажение наименьшее, поэтому поверхность КОК называется поверхностью наилучшей фокусировки. Отклонение этой поверхности от плоскости представляет собой аберрацию, называемую кривизной поля. В оптической системе может отсутствовать астигматизм (например, если MOM и SOS совпадают), но кривизна поля остаётся: изображение будет резким на поверхности КОК, а в фокальной плоскости FF изображение точки будет иметь вид кружка. Дисторсия проявляется в случае, если ; как видно из формул (*), она может быть в меридиональной плоскости: . Дисторсия не зависит от координат точки пересечения луча с плоскостью входного зрачка (поэтому каждая точка изображается точкой), но зависит от расстояния точки до оптической оси , поэтому изображение искажается, нарушается закон подобия. Например, изображение квадрата имеет вид подушкообразной и бочкообразной фигур (рис. 4) соответственно в случае Е >0 и Е <0. Труднее всего устранить сферическую аберрацию и кому. Уменьшая диафрагму, можно было бы практически полностью устранить обе эти аберрации, однако уменьшение диафрагмы уменьшает яркость изображения и увеличивает дифракционные ошибки. Подбором линз устраняют дисторсию, астигматизм и кривизну поля изображения. Date: 2015-05-18; view: 655; Нарушение авторских прав |