Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Регистрирующие среды





Голография крайне требовательна к разрешающей способности фотоматериалов. Расстояние между двумя максимумами интерференционной картины того же порядка, что и длина волны лазера, а последняя чаще всего составляет 632,8 нм для гелий-неонового лазера, 532 нм длянеодимового лазера на второй гармонике, 514 нм и 488 нм для аргонового лазера. Таким образом, это величина порядка 0.0005 мм. Чтобы получить чёткое изображение картины интерференции, потребовались регистрирующие среды с разрешающей способностью до 6000 линий на миллиметр (при записи по схеме на встречных пучках с углом схождения лучей 180°).

Регистрирующие среды подразделяются на плоские (двумерные) и объёмные (трёхмерные или толстые). Для классификации используется параметр, который иногда в литературе называют критерий Клейна:

,

где λ — длина волны; d — толщина слоя; n — средний коэффициент преломления слоя; Λ — расстояние между интерференционными плоскостями.

Объёмными (толстыми) голограммами считаются такие, у которых Q > 10. И наоборот, голограмма считается тонкой (плоской), когда Q < 1.

[править]Галогенсеребряные фотоматериалы

Основным фотоматериалом для записи голограмм являются специальные фотопластинки на основе традиционного бромида серебра. За счёт специальных присадок и специального механизма проявления удалось достичь разрешающей способности более 5000 линий на миллиметр, однако за это приходится платить крайне низкой чувствительностью пластинки и узким спектральным диапазоном (точно подобранным под излучение лазера). Чувствительность пластинок настолько низкая, что их можно выставить на несколько секунд под прямой солнечный свет без риска засветки.

Кроме того, иногда применяются фотопластинки на основе бихромированной желатины, которые обладают ещё большей разрешающей способностью, позволяют записывать очень яркие голограммы (до 90 % падающего света преобразуется в изображение), однако они ещё менее чувствительны, причём они чувствительны только в области коротких волн (синий и, в меньшей степени, зелёный участки спектра).

В России крупное промышленное (кроме некоторого количества мелких) производство фотопластинок для голографии осуществляет российская «Компания Славич».

Некоторые схемы записи позволяют писать и на пластинках с меньшей разрешающей способностью, даже на обычных фотоплёнках с разрешением порядка 100 линий на миллиметр, однако эти схемы имеют массу ограничений и не обеспечивают высокого качества изображения.

[править]Фотохромные кристаллы

Наряду с фотографическими мелкозернистыми галогенсеребряными средами, применяются так называемые фотохромные среды, изменяющие спектр поглощения под действием записывающего света.

[править]KCl

Одними из эффективнейших среди фотохромных кристаллов являются щёлочно-галоидные кристаллы, из которых наилучшие результаты были получены на аддитивно окрашенныхкристаллах хлорида калия (KCl). Голограммы, записанные на таких кристаллах, достигают 40 % относительной дифракционной эффективности при теоретически возможной в данной среде 60 %. При этом голограммы в данном материале весьма толстые (толщиной до нескольких миллиметров, и могут в принципе достигать единиц сантиметров). Голографическая запись в аддитивно окрашенных кристаллах KCl базируется на фототермическом F-X преобразовании центров окраски, то есть фактической коалесценции одиночных анионных вакансий в более крупные кластерные образования размером десятки нанометров. При этом голографическая запись в таких кристаллах реверсивна (обратима) и очень устойчива по времени [8].

Также возможна голографическая запись с помощью легирования кристаллов соответствующей примесью. Возможно использовать для этой цели эффект компенсационного влияния введенных в АО KCl катионных (ионы Са++) и анионных (ионы ОН) примесей на процесс фототермического преобразования F-центров. Показано, что просветление при этом в максимуме полосы поглощения F-центров достигает 90 % и не сопровождается образованием центров, обуславливающих поглощение в видимой области спектра. Разработан механизм такого влияния, основанный на фотохимических реакциях, конечные продукты которых поглощают в УФ-диапазоне. Обосновано, что ключевую роль в рассматриваемом явлении играют бивакансии и комплексы Са++(ОН)2 — катионная вакансия. На основе полученных результатов разработана новая фотохромная система для формирования голограмм, основанная на эффекте компенсации влияния катионных и анионных примесей [9].

[править]Сегнетоэлектрические кристаллы

При голографической записи, в качестве регистрирующей среды, так же широко используются сегнетоэлектрические кристаллы. В основном это ниобат лития — LiNbO3. Явление изменения показателя преломления под действием света вызвано электрооптическим эффектом. При записи голограмм сегнетоэлектрические кристаллы обладают теми же преимуществами, что и фотохромные материалы. Кроме того, после множества циклов «запись — стирание» не наблюдается эффекта усталости. Поскольку получаемые голограммы являются фазовыми, их дифракционная эффективность может быть на порядок выше, чем у голограмм на фотохромных материалах.

Однако, эти кристаллы обладают недостатками присущими фотохромным материалам. Основной проблемой в данном случае является нестабильность голограммы, которая не фиксируется в отличие от обычных фотослоев. Другая трудность состоит в низкой величине голографической чувствительности. [10]

[править]Голографические фотополимерные материалы

В последние годы интенсивно разрабатываются регистрирующие среды на базе голографических фотополимерных материалов, представляющих собой многокомпонентную смесь органических веществ, нанесенную в виде аморфной пленки толщиной 10-150 мкм на стеклянную или пленочную подложку. Фотополимерные пленки менее дорогостоящие чем кристаллы ниобата лития, менее громоздки и имеют по сути большую величину изменения коэффициента преломления, что приводит к большим значениям дифракционной эффективности и большей яркости голограммы. Однако, с другой стороны ниобат лития, из-за его толщин, способен сохранять большие объемы информации, чем фотополимерные пленки толщины которых ограничены.

Поскольку фотополимеры не обладают зернистым строением, то разрешающая способность такого материала достаточна для сверхплотной записи информации. Чувствительность фотополимера сравнима с чувствительностью фотохромных кристаллов. Записанные голограммы являются фазовыми, что позволяет получать высокую дифракционную эффективность. Такие материалы позволяют хранить информацию длительное время, устойчивы к воздействию температур, а также отличаются улучшенными оптическими характеристиками.[11]

Date: 2015-05-18; view: 767; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию