Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Электромагнитное реле





Согласование тяговых и противодействующих характеристик. Электромагнитные реле благодаря своей простоте, надежности получили широкое распространение как в схемах электропривода, так к в схемах защиты энергосистем.

Для реле защиты энергосистем и реле управления,
контролирующих входной параметр в узких пределах,
коэффициент возврата должен быть возможно ближе
к единице.

Большие возможности дает электромагнитная систе-
ма с вращательным движением якоря (рис. 11-5). Из-
меняя форму якоря и полюсов, можно получить практи-
чески любую тяговую характеристику.

Допустим, что магнитная цепь не насыщена. Будем менять конечный зазор с помощью тонких латунных про­кладок. Начальное положение якоря оставим без изменения. Поскольку начальный зазор не меняется, то и ток трогания остается без изменения. При изменении ко­нечного зазора 6К сила возвратной пружины, отрываю­щей якорь, остается практически неизменной, так как эта пружина имеет большую деформацию, и изменение ее длины на долю миллиметра не изменяет силы пружины.

а Реле для энергосистемы. В схемах защиты энергосистем,
крупных и ответственных установок

(мощных двигателей, трансформаторов) широко применяются реле серии ЭТ. Эскиз одного из таких реле предоставлен на рис. 11-5.


Применение поворотной системы и легконасыщегося якоря позволяет приблизить тяговый момент к противодействующему и получить высокий коэффициент возврата(0.85). Подвижный контакт 5 мостикового типа шарнирно укреплен на рычаге связанном с валом реле. Противодействующая сила создается спиральной пружиной 4. Начальная деформация пружины меняется рычагом 6. Начальное и конечное положение якоря определяются специальными упорами.

Грубое регулирование тока срабатывания производится за счет изменения схемы соединения обмоток, а плавное - изменением начального натяжения пружины. При переходе с последовательного соединения на параллельное, ток срабатывания увеличивается в 2 раза. В 2 раза ток срабатывания можно поднять за счет увеличения натяга пружины. Таким образом, реле позволяет регулировать ток срабатывания от 0.05 до 200 А.

Реле серии ЭТ имеют малое собственное потребление, порядка 0.1 В*А, высокий коэффициент возврата (до 0.85) малое время срабатывания (0,02с) и высокую точность работы ±5%.

К недостаткам реле следует отнести малую мощность контакт­ной системы, необходимость тщательной регулировки реле во избе­жание вибрации контактов. Мощность контактов на размыкание составляет всего 50 Вт постоянного тока при напряжении 220 В.

Аналогичную конструкцию имеют реле напряжения серии ЭН. Отличие этих реле от реле серии ЭТ заключается в том, что об­мотки выполнены с большими числами витков и сопротивлениями и рассчитаны на подключение к источнику напряжения. Потребляе­мая мощность при этом возрастает до 1 В-А. Все остальные пара­метры такие же, как у реле серии ЭТ. Реле серии ЭН могут ра­ботать и как максимальные, реагируя на повышение напряжения выше напряжения уставки, и как минимальные, реагируя на пони­жение напряжения ниже напряжения уставки.

В электромагнитах переменного тока ток в обмотке сильно зависит от положения якоря. В клапанных электромагнитах ток в притянутом состоянии в десятки раз меньше, чем при отпущенном якоре. Это затрудняет создание максимальных реле напряжения на базе клапанной системы, так как при напря­жениях, близких к напряжению срабатывания, через обмотку про­текает большой ток, выделяется мощность, в сотни раз превышаю­щая мощность в обмотке при притянутом якоре. Приходится сильно увеличивать габариты катушки, чтобы рассеивать большую мощ­ность, выделяемую при отпущенном якоре. Большим преимуществом реле серии ЭН является относительно небольшое изменение маг­нитной проводимости, в результате чего ток в обмотках мало ме­няется при повороте якоря. Это дает возможность иметь малые га­бариты обмоток.

б) Реле тока и напряжения для управления электроприводом. В схемах управления и защиты применяется реле постоянного тока серии РЭВ-300 с высоким коэффициентом возврата. Реле этой се­рии выпускаются и как реле напряжения и как реле тока в зави­симости от обмоточных данных.

На рис. 11-6 изображено токовое реле. Магнитопровод 1 имеет U-образную форму и выполнен из прутка круглого сечения. Плос­кий якорь 2 вращается на призме, что обеспечивает высокую меха­ническую износостойкость реле. Обмотка 3 выполняется из меди в соответствии с номинальным током реле. Регулирование силы пружины 5 осуществляется гайкой 6.


Якорь 2 связан с подвижным контактом 8 с помощью изоляционной

пластины 7. Реле имеет два неподвижных контакта 9 и 10. Подвижный контакт 8 соединяется с зажимом 11 с помощью гибкой связи 12. Реле выполняется в ви­де единого блока, который с помощью шпилек 4 может устанавли­ваться на металлических рейках сборной панели.

В реле напряжения уставка срабатывания меняется в пределах 30—50% Uа. При увеличении, сжатия пружины растет напряжение трогания итр, увеличивается время трогания согласно уравнению

Для увеличения быстродействия реле напряжения рекомендует­ся брать реле на низкое номинальное напряжение (24 или 48 В) и последовательно включать добавочный резистор из константана.

Добавочный резистор позволяет увеличить напряжение, при котором срабатывает реле. Сопротивление его выбирается таким образом, чтобы ток срабатывания лежал в пределах, обеспечиваю­щих быстродействие реле.

Следует отметить, что включение добавочного резистора, если он выполнен из константана, уменьшает зависимость напряжения срабатывания от температуры.

Коэффициент возврата регулируется путем изменения конечно­го зазора. Для реле рис. 11-6 регулировка конечного зазора бк и хода якоря осуществляется с помощью неподвижных контактов 10 и 9. При подъеме контакта 10 зазор бк увеличивается. При опу­скании контакта 9 уменьшается ход якоря. Минимальное значение раствора контактов б2 равно 1,5 мм.

в) Реле защиты схем электропривода. При повреждении якоря двигателя Я срабаты­вает максимальное мгновенное реле РМ и размыкает свои контак­ты РМ в цепи катушки линейного контактора Л. Якорь последнего отпадает. При этом обесточивается цепь якоря двигателя. Так как ток в якоре стал равным нулю, происходит отпускание реле РМ, контакты его замыкаются и цепь катушки контактора подготавли­вается к следующему включению.

При отключении контактора его блок-контакт БКЛ размыкает­ся, поэтому при замыкании контактов РМ контактор Л не включит­ся вновь. Характерным для схем является возврат реле РМ в исход­ное положение при токе в обмотке, равном нулю.

 

Тепловые реле

а) Принцип действия. Долговечность энергетическо­го оборудования в значительной степени зависит от пе­регрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длитель­ности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. При номи­нальном токе допустимая дли­тельность его протекания рав­на бесконечности. Протекание тока, большего, чем номиналь­ный, приводит к дополнитель­ному повышению температу­ры и дополнительному старе­нию изоляции. Поэтому чем больше перегрузка, тем крат- ковременнее она допустима.

Для защиты от перегрузок наиболее широкое рас­пространение получили тепловые реле с биме­таллической пластиной.

Биметаллическая пластина состоит из двух пластин, одна из которых имеет больший температурный коэффи­циент расширения а1, другая — меньший а2. В месте при­легания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет свар­ки. Если закрепить неподвижно такую пластину и на­греть, то произойдет изгиб пластины в сторону материа­ла с меньшим а. Именно это явление используется в теп­ловых реле.


Широкое распространение в тепловых реле получили материалы инвар (малое значение а) и немагнитная или хромоникелевая сталь (большое значение А).

Для получения большего прогиба необходимо, чтобы пластина имела большую длину и малую толщину. На­оборот, если необходимо, чтобы пластина развивала большую силу, целесообразно иметь широкую пластину с малой длиной и большой толщиной.

При работе биметаллической пластины в ее компо­нентах возникают напряжения сжатия и растяжения, ко­торые не должны превышать допустимых значений.

Нагрев биметаллического элемента может произво­диться за счет тепла, выделяемого в пластине током на­грузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при ком­бинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через би­металл, и за счет тепла, выделяемого специальным на­гревателем, также обтекаемым током нагрузки.

Прогибаясь, биметаллическая пластина своим сво­бодным концом воздействует на контактную систему. Поскольку пластина прогибается медленно, целесообраз­но применять прыгающие контакты (см. рис. 11-11).

Основной характеристикой реле является зависи­мость времени срабатывания от тока нагрузки (время- гоковая характеристика).

б) Конструкция тепловых реле. Прогиб биметаллической пла­стины происходит медленно. Если с пластиной непосредственно свя­зать подвижный контакт, то малая скорость его движения, не смо­жет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устрой­ство. Наиболее совершенным является «прыгающий» контакт (рис. 11-11).

В обесточенном состоянии пружина / создает момент отно­сительно точки 0, замыкающий контакты 2. Биметаллическая пла­стина 3 при нагреве изгибается вправо, положение пружины изме­няется. Она создает момент, размыкающий контакты 2 за время,

обеспечивающее надежное гашение дуги.

Современные контакторы и пускатели комплектуются с тепло­выми реле ТРП (однофазное) и ТРН (двухфазное).

Биметаллическая пластина имеет комбинированную систему нагрева. Пластина 1 нагревается как за счет нагревателя 5, так и за счет прохождения тока через саму пласти­ну. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик 3. Реле позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой 2, меняю­щей первоначальную деформацию пластины. Такая регулировка по­зволяет резко снизить число потребных вариантов нагревателя. Воз­врат реле в исходное положение после срабатывания производится кнопкой 4. Возможно исполнение и с самовозвратом после остыва­ния биметалла. Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды. Уставка меняется на 5% при изменении температуры окру­жающей среды на 10°С. Высокая ударо- и вибростойкость реле по­зволяют использовать его в самых тяжелых условиях.







Date: 2015-05-18; view: 768; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию