Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Глава 6. 1. Знающий читатель поймет, что в данной главе рассматривается только пертурбативная теория струн; выходящие за рамки теории возмущений аспекты обсуждаются в
1. Знающий читатель поймет, что в данной главе рассматривается только пертурбативная теория струн; выходящие за рамки теории возмущений аспекты обсуждаются в главах 12 и 13. 2. Интервью с Джоном Шварцем, 23 декабря 1997 г. 3. Схожие предположения были независимо высказаны Тамиаки Йонея, а также Коркутом Бардакчи и Мартином Гальперном. Значительный вклад в разработку теории струн на ранних этапах ее существования был также сделан шведским физиком Ларсом Бринком. 4. Интервью с Джоном Шварцем. 23 декабря 1997 г. 5. Интервью с Майклом Грином, 20 декабря 1997 г. 6. Стандартная модель предлагает механизм, дающий частицам массу, так называемый механизм Хиггса, получивший свое имя в честь шотландского физика Питера Хиггса. Однако с точки зрения объяснения значений масс частиц, задача здесь просто перекладывается на гипотетическую «частицу, дающую массу» — хиггсовский бозон. В настоящее время ведутся поиски этой частицы, но, опять же, даже если удастся обнаружить ее и определить ее свойства, они будут представлять собой входные данные для стандартной модели, не имеющие никакого теоретического объяснения. 7. Для читателей, имеющих математическую подготовку, укажем, что связь между модами колебаний струны и константами взаимодействия может быть более точно описана следующим образом. При квантовании струны ее возможные состояния, как и состояния любой квантово-механической системы, могут быть представлены векторами в гильбертовом пространстве. Эти векторы могут быть разложены по собственным значениям некоторого набора коммутирующих эрмитовых операторов. Среди этих операторов имеется гамильтониан, собственное значение которого дает энергию и, следовательно, массу этой колебательной моды, а также операторы, генерирующие различные калибровочные симметрии этой теории. Собственные значения этих последних операторов и дают константы взаимодействия, которые несут соответствующие колебательные моды струны. 8. Основываясь на догадках, сделанных в ходе второй революции в теории суперструн (обсуждаемой в главе 12), Виттен и Джо Ликкен (из Национальной лаборатории высокоэнергетических исследований) нашли маленькую, но возможную лазейку в этом заключении. Используя ее, Ликкен предположил, что струны могут находиться под гораздо меньшим натяжением, и, следовательно, иметь гораздо больший размер, чем считалось первоначально. В действительности они могут оказаться столь большими, что могут быть обнаружены с помощью ускорителей частиц следующего поколения. Если эта маловероятная возможность окажется реальностью, открываются волнующие перспективы того, что многие замечательные следствия теории струн, обсуждаемые в этой и в последующих главах, смогут быть экспериментально проверены в течение ближайшего десятилетия. Но, как мы увидим в главе 9, даже в случае более «традиционного» сценария, разделяемого специалистами по теории струн, согласно которому струны обычно имеют длину порядка I0--33 см, остаются косвенные методы экспериментальной проверки. 9. Знающий читатель поймет, что фотон, образовавшийся при столкновении электрона и позитрона, является виртуальным и, следовательно, должен быстро высвободить свою энергию путем образования пары частица-античастица. 10. Конечно, камера работает, улавливая отражающиеся от интересующих нас объектов фотоны и регистрируя их на фотопленке. Использование камеры в этом примере является символическим, поскольку мы не представляем себе фотонов, отражающихся от сталкивающихся струн. Мы просто хотим зарегистрировать на рис. 6.7 в всю историю взаимодействия. Сказав это, мы должны обратить ваше внимание на один тонкий момент, о котором умалчивает обсуждение в основном тексте. В главе 4 мы узнали, что квантовая механика может быть сформулирована с использованием фейнмановского метода суммирования по траекториям, в котором движение объектов анализируется путем суммирования вклада всех возможных траекторий, ведущих от выбранной начальной точки к некоторой конечной (каждой траектории в методе Фейнмана сопоставляется статистический вес). На рис. 6.6 и 6.7 мы показали вклад бесконечного числа возможных траекторий, по которым точечные частицы (рис. 6.6) или струны (рис. 6.7) следуют от начальной точки к пункту назначения. Однако приводимое в разделе обсуждение в равной мере применимо и к любой другой возможной траектории, а значит и ко всему квантово-механическому процессу в целом. (Фейнмановская формулировка квантовой механики точечных частиц с использованием подхода, основанного на суммировании по траекториям, была обобщена на случай теории струн в работах Стэнли Мандельстама из университета штата Калифорния в Беркли и Александра Полякова, в настоящее время работающего на физическом факультете Принстонского университета.) Date: 2015-05-17; view: 419; Нарушение авторских прав |