Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Дифференциальное уравнение конвективного теплообмена





 

При конвективном теплообмене тепло распространяется в жидкости одновременно теплопроводностью и конвекцией. Процесс распространения тепла теплопроводностью описывается дифференциальным уравнением вида:

.

Левая часть этого уравнения представляет локальное изменение температуры элемента, выделенного в неподвижной среде.

При конвективном теплообмене элемент перемещается из одной точки пространства в другую. В этом случае изменение температуры элемента может быть выражено при помощи субстациональной производной, учитывающей одновременно изменения параметра во времени и в пространстве, связанные с перемещением элемента из одной точки в другую. Субстанциональная производная, характеризующая полное изменение температуры движущего элемента, может быть записана в следующем виде:

.

Если в уравнении теплопроводности заменить локальное изменение температуры полным, то можно получить дифференциальное уравнение конвективного переноса тепла Фурье – Кирхгофа:

.

Для полного математического описания это уравнение должно быть дополнено уравнением, характеризующим условия на границе раздела движущейся среды и твердого тела.

У поверхности твердого тела, находящегося в движущейся среде, всегда имеется пограничный слой толщиной , через который тепло распространяется теплопроводностью (рис. 3.3).

Количество переданного через этот слой тепла при его распространении от теплообменной поверхности к ядру жидкостного потока можно определить по закону Фурье:

.

Рис. 3.3. Изменение температуры в движущей среде при конвективном теплообмене

 

Это же количество тепла можно найти по закону Ньютона:

.

Приравнивая правые части последних равенств, получаем уравнение, характеризующее условия теплообмена на границе раздела движущейся среды и твердого тела:

.

Полученное уравнение и дифференциальное уравнение конвективного массообмена в полной мере описывают процесс, но для их решения необходимо еще знать проекции скоростей потока жидкости по соответствующим координатам.

С этой целью система уравнений должна включать дифференциальные уравнения движения и неразрывности. Но, как уже было сказано выше, такая система уравнений не имеет аналитического решения. Не имеет аналитического решения также система с дифференциальным уравнениям конвективного теплообмена.

Таким образом, аналитически не может быть установлено ни температурное поле в движущейся среде, ни величина теплового потока. Для решения конкретных инженерных задач приходится прибегать к эксперименту и обобщениям с использованием методов теории подобия.

 







Date: 2015-05-09; view: 543; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию