Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теоретические сведения. Рассмотрим систему из двух чистых жидкостей, нерастворимых друг в друге, при этом жидкости образуют два слоя





Рассмотрим систему из двух чистых жидкостей, нерастворимых друг в друге, при этом жидкости образуют два слоя. Если в такую систему добавить третье вещество, растворимое в обеих жидкостях (третий компонент), то после достижения равновесия этот третий компонент распределится между обоими слоями, образуя два раствора различной концентрации.

Согласно правилу фаз Гиббса число степеней свободы трехкомпонентной ( ) двухфазной ( ) системы равно трем:

(40)

Таким образом, из трех параметров, характеризующих равновесие системы (температура и концентрации растворенного вещества в двух фазах ), произвольно можно изменять лишь два. Третий параметр является функцией двух независимых переменных. При постоянной концентрация растворенного вещества «i» в одной из фаз является функцией его концентрации в другой фазе, т.е. . Другими словами, при равновесии двух фаз концентрации растворенного вещества «i» в них взаимно связаны. Эта связь выражается законом распределения вещества между двумя несмешивающимися жидкостями, согласно которому константа распределения, равная отношению активностей растворенного вещества в разновесных фазах является однозначной функцией температуры.

(41)

Вывод уравнения (41) основан на условии равновесия системы: химические потенциалы растворенного вещества одинаковы в обеих фазах, т.е. .

Используя известное соотношение

(42)

в котором относится к стандартному состоянию, и приравнивая потенциалы и вещества «i», приходим к равенству:

. (43)

Поскольку стандартные потенциалы компонента «i» в каждой из фаз и зависят лишь от температуры, отношение активностей компонента, называемое константой распределения, является также функцией только температуры и не зависит от состава растворов.

В реальных растворах активность компонента

(44)

поэтому вместо константы распределения удобнее использовать коэффициент распределения , равный отношению концентраций растворенного вещества в равновесных фазах



. (45)

Коэффициент распределения является функцией состава, поскольку коэффициенты активности и зависят от концентрации раствора.

В бесконечно разбавленных растворах коэффициент активности растворенного вещества постоянен, поэтому здесь не только константа, но и коэффициент распределения не зависят от состава равновесных фаз.

В бесконечно разбавленном растворе все величины, характеризующие состав, пропорциональны друг другу ( ). Поэтому здесь коэффициент распределения может быть выражен через отношение равновесных концентраций в любых единицах, например,

. (46)

Значения при этом получаются различными, но во всех случаях они не зависят от состава.

Измерение коэффициента распределения позволяет определять активности растворенного вещества. Для этого бинарный раствор с известной зависимостью активности компонентов от состава приводят в контакт с несмешивающейся жидкостью, содержащей общий с первой фазой компонент, активность которого неизвестна. После установления равновесия измеряют концентрации и растворенного вещества в каждой из фаз для растворов различного состава. Находят соответствующие значения отношений и строят график зависимости этого отношения от концентрации третьего компонента в растворах с известными активностями. Экстраполируя полученную линию до нулевой концентрации ( ), на оси ординат получают значение константы распределения для бесконечно-разбавленного раствора. Для таких растворов, как уже отмечалось, отношение концентраций растворенного вещества не зависит от состава растворов. Зная это отношение и величины активностей растворенного вещества в одном из растворителей, рассчитывают активности третьего компонента в другом растворителе при всех исследованных концентрациях.

Закон распределения имеет и другое важное практическое значение. Из предыдущих уравнений следует, что для понижения концентрации растворенного вещества в одной фазе при постоянных температуре и давлении необходимо понизить его концентрацию в другой. Последнее может быть достигнуто разбавлением одной из фаз. В частности, при производстве стали для очистки металла от вредных примесей (фосфора, серы и др.) либо увеличивают количество шлака, либо удаляют шлак, содержащий вредную примесь, и наводят новый. Так как при постоянной температуре константа распределения примеси остается величиной постоянной, то часть примеси переходит из металла в новый шлак и концентрация ее в металле уменьшается. Такое извлечение растворенного вещества из раствора называется экстракцией.

Очевидно, экстракция будет тем эффективнее, чем больше коэффициент распределения отличается от единицы. Коэффициент распределения можно менять, добавляя в растворы вещества, меняющие коэффициенты активности данного компонента «i». Так, введение вещества, имеющего большее сродство к данному компоненту, чем растворитель, снижает коэффициент активности этого компонента и, следовательно, изменяет величину коэффициента .








Date: 2015-05-09; view: 178; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию