Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Термоэлектрические ПД
Все потенциалы, обозначенные на рис. 38, е буквой f, имеют переменные значения, зависящие от свойств и условий взаимодействия проводников. При этом переменные разности типа jА - f12, jА - f13, jВ - f21, jВ - f23, jС – f32, jС – f31 представляют собой внутренние скачки потенциала, так как возникают в данном теле между слоями х и остальным его веществом. Переменные разности типа f12, f23 и f31, возникающие на границе раздела, соприкосновения разнородных тел, являются скачками внешними. При определении нескомпенсированной ЭДС надо просуммировать все эти скачки. Однако внутренние скачки обычно бывают заметно меньше внешних, ибо внутренние и поверхностные слои данного тела различаются между собой не так сильно, как сами разнородные тела. Поэтому для простоты и наглядности рассуждений в первом грубом приближении можно пренебречь внутренними скачками по сравнению с внешними. Тогда искомая нескомпенсированная ЭДС, например, для трех тел (j3) может быть выражена только через внешние скачки j12, j23 и j31. Находим j3 = j12 + j23 + j31 = f12 – f21 + f23 – f32 + f31 – f13 ¹ 0 (339) где j12 = f12 – f21; j23 = f23 – f32; j31 = f31 – f13 (340) В рассматриваемых условиях разности типа f12 – f13, f21 – f23 и f31 – f32, обозначенные на рис. 38, е тройными вертикальными прямыми, представляют собой перепады потенциала вдоль первого, второго и третьего проводников. Если один из них разорвать, то в двух других указанные перепады обращаются в нуль, а разность потенциалов на концах разорванного проводника становится равной нескомпенсированной ЭДС j3, которую можно легко измерить. При этом электрический ток отсутствует, а потенциалы jА, jВ и jС приобретают некие новые значения, обусловленные перераспределением заряда в разорванной цепи. В общем случае при наличии цепи, состоящей из n тел, получается такая же картина (jn ¹ 0). В частном случае, когда цепь составлена всего из двух тел (n = 2), формула (339) дает j2 = j12 + j21 = f12 – f21 + f21 – f12 = 0 что хорошо согласуется с законом Вольта, но при этом суммируются не вольтовские, а искаженные взаимным влиянием тел скачки потенциалов. Следовательно, при замыкании в цепь трех или более тел (n ³ 3) суммарная ЭДС цепи, вопреки закону Вольта, может быть не равна нулю. При этом немаловажное значение приобретает конкретное сочетание и чередование тел в замкнутой цепи. В частности, при симметричном расположении проводников некоторые из них на ЭДС цепи могут не оказать влияния. Например, звено 2, симметрично расположенное относительно проводников 1 (рис. 38, в), из рассмотрения выпадает - это прямо следует из уравнения типа (339). Точно так же на ЭДС не влияют звенья 2 и 3 (рис. 38, г), но при том же составе проводников можно образовать цепь, у которой все звенья вносят свой полноценный вклад в ЭДС (рис. 38, д). Это должно свидетельствовать о том, что в реальных условиях скачки потенциала являются величинами переменными, а вольтовский детерминизм утрачивает свою силу из-за воздействия закона состояния ОТ на электрический интенсиал f. Обсуждаемая картина очень напоминает механическую: в механике железный детерминизм ее законов нарушается благодаря изменению хронального интенсиала t под управлением закона состояния. Эти примеры весьма наглядно показывают, как уточняются и исправляются хорошо известные законы физики под влиянием начал ОТ; при этом открываются принципиально новые возможности. Таким образом, цепь, составленная из трех и более проводников, представляет собой вечный двигатель второго рода: под действием нескомпенсированной ЭДС происходит вечная круговая циркуляция электрического заряда. В спаях цепи наблюдаются поглощение и выделение теплоты Пельтье, а вдоль проводников - поглощение и выделение теплоты Томсона и теплоты нового линейного эффекта, описанного в работах [18, с.316; 21, с.312], а также выделение теплоты Джоуля. Алгебраическая сумма теплот Пельтье, Томсона и линейного эффекта равна и противоположна по знаку суммарной джоулевой теплоте - этим балансом обеспечивается циркуляция заряда в условиях изоляции цепи от окружающей среды. Получается самофункционирующая термодинамическая пара, только в данном случае приходится соединять между собой не два, а три и более проводников. В связи с этим должен заметить, что в любой термодинамической паре в общем случае может быть задействовано не обязательно два, но произвольное количество проводников. Теплота Пельтье, поглощаемая и выделяемая в спаях, приводит к появлению между ними разности температур. Это обстоятельство может быть использовано для повышения эффективности работы ПД-14. С этой целью свойства проводников надо подбирать таким образом, чтобы термоЭДС, возникающая между спаями цепи (эффект Зеебека), усиливала бы нескомпенсированную ЭДС. Что касается самого эффекта Пельтье, то переменность скачков потенциала сыграла роковую роль в деле правильного понимания физической сути этого эффекта. Эффект Пельтье имеет чисто диссипативную природу и может быть как положительным (экранированная теплота выделяется), так и отрицательным (теплота экранируется, поглощается), причем количество тепла Пельтье в точности равно произведению разности (скачка) потенциалов на силу тока. Но если в качестве скачка взять постоянную вольтовскую разность типа jАВ, не исправленную на взаимное влияние тел А и В, то результаты опытов по независимому определению количества тепла Пельтье и измерению разности jАВ и силы тока не совпадут между собой. Из-за этого несовпадения теплоте Пельтье был придан недиссипативный смысл, факт существования отрицательной диссипации был замаскирован, что лишний раз подтверждало идею Клаузиуса об одностороннем развитии мира, то есть о существовании только положительной теплоты диссипации. Механическое вечное движение можно наблюдать в термоэлектрическом двигателе ПД-17. Для этого надо легкую шелковинку или бузиновый шарик подвесить между пластинами, подключенными к ПД-14 (рис. 38, ж). Шелковинка, попеременно соприкасаясь с пластинами, перезаряжается и совершает таким образом периодические колебательные движения. Если электроэнергия или механическая работа отводится от термоэлектрического ПД в окружающую среду, то цепь автоматически несколько снижает свою температуру и происходит поглощение из окружающей среды эквивалентного количества тепла. При этом КПД преобразования теплоты одного источника (окружающей среды) в работу равен 100%. Все это успешно и весьма просто нарушает второй закон Клаузиуса [ТРП, стр.465-468].
Date: 2015-05-09; view: 492; Нарушение авторских прав |