Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Вывод уравнения. Следующей важнейшей характеристикой, входящей в основное уравнение ОТ для ансамбля простых явлений, служит интенсиал Р
Следующей важнейшей характеристикой, входящей в основное уравнение ОТ для ансамбля простых явлений, служит интенсиал Р, который является мерой качества поведения вещества. Анализ этой меры позволяет установить третье интереснейшее свойство природы. Согласно второй строчке общего уравнения (15), интенсиал, играющий роль меры N5, есть однозначная функция экстенсора N, (см. формулу (27)). Следовательно, для системы с n степенями свободы можно написать Pk = fk(E1; E2;...; En) (52) Общее количество этих равенств равно n, то есть k =1,2,..., n - по числу интенсиалов; вид функций fk нам неизвестен. Уравнение (52) напоминает прежнее соотношение (30) для энергии, в частности у этих соотношений одинаковы аргументы. Однако между указанными уравнениями имеются и существенные различия. Одно из них заключается в том, что абсолютное значение энергии найти невозможно, поэтому нам пришлось ограничиться определением ее изменений. Применительно к интенсиалам таких затруднений не возникает: имеется реальная возможность определять как абсолютные значения интенсиалов, так и их изменения. Оба эти случая играют важную роль в теории и практических расчетах. Разумеется, изменения интенсиалов находятся много проще, чем абсолютные их значения, поэтому начать придется с определения изменений. С этой целью, как и прежде, необходимо продифференцировать функцию (52) [17, с.28; 18, с.21; 21, с.52]. Однако с целью экономии места целесообразно рассмотреть только две степени свободы. Для n = 2 уравнение (52) выглядит следующим образом: P1 = f1(E1; E2); (53) P2 = f2(E1; E2). Дифференцирование этих равенств дает dP1 = A11dE1 + A12dE2 (54) dP2 = A21dE1 + A22dE2 где A11 = (¶P1/¶E1)E2 = ¶2U/¶E21; A22 = (¶P2/¶E2)E1 = ¶2U/¶E22; (55) A12 = (¶P1/¶E2)E1 = ¶2U/(¶E1¶E2); A21 = (¶P2/¶E1)E2 = ¶2U/(¶E2¶E1); (56) Индекс внизу скобки указывает на экстенсор, который при дифференцировании сохраняется постоянным. В соотношениях (55) и (56) использованы значения интенсиалов, определяемых равенствами (37). В случае гипотетической системы с одной внутренней степенью свободы (n = 1) имеем P = f(E) (57) dP = AdE (58) где A = dP/dE = d2U/dE2 (59) Выведенные соотношения (54) и (58) представляют собой дифференциальные уравнения второго порядка, в них отсутствуют неизвестные функции f, f1, f2. Эти уравнения определяют изменения интенсиалов в функции изменений экстенсоров. В термодинамике экстенсоры и интенсиалы обычно принято именовать параметрами состояния системы. Следовательно, найденные уравнения тоже могут быть названы уравнениями состояния. Однако из уравнений состояния видно, что в них роль независимых переменных - аргументов играют экстенсоры, а роль зависимых переменных - функций - интенсиалы. Поэтому истинными параметрами состояния правильно считать только экстенсоры, интенсиалы же являются функциями состояния. В соответствии с этим должна быть уточнена и вся остальная терминология. Под свойствами системы я буду понимать различные ее характеристики, такие, как Е, U, Р, А и т.д. Состояние - это полная совокупность всевозможных свойств системы. Очевидно, что для однозначного определения состояния системы необходимо и достаточно задать значения только параметров состояния, или экстенсоров Е. Все остальные свойства являются функциями состояния. К числу функций состояния относятся величины U, Р, А и т.д. Всего существует бесчисленное множество различных функций состояния. В противоположность этому работа Q не является ни параметром, ни функцией состояния, поскольку она не определяет какое-либо свойство системы. Работа представляет собой характеристику процесса взаимодействия системы и окружающей среды, поэтому она является функцией процесса [ТРП, стр.112-114].
Date: 2015-05-09; view: 512; Нарушение авторских прав |