Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Гомологические ряды в наследственной изменчивости, или закон Вавилова





Мутирование происходит в различных направлениях. Это многообразие подчиняется закономерности, обнаруженной Вавиловым 1920 году. Виды и роды генетически близкие, характеризуются сходными рядами наследственной изменчивости.

Гомологические ряды выходят за пределы семейств, н-р, короткопалость обнаружена во многих отрядах млекопитающих, альбинизм. Закон позволяет предвидеть новые мутации, неизвестные в группе ранее. Важен для изучения наследственных болезней человека. Многие мутации животных служат моделями проявления наследственных болезней человека. У собак – это гемофилия, глухота у морских свинок, ожирение и диабет – мыши.

 

 

66. Характеристика процессов мутагенеза и канцерогенеза. Мутагенные факторы и их классификация. Характеристика и механизмы действия мутагенных факторов. Человеческая деятельность как основной источник загрязнения окружающей среды.

Мутагенез – процесс образования мутаций. Факторы, вызывающие мутации – это мутагены. Мутагены воздействуют на генетический материал особи, вследствие чего может измениться фенотип.
Канцерогенез – процесс образования опухолей. Установлено, что при канцерогенезе изменения происходят на молекулярно-генетическом уровне и затрагивают механизмы, отвечающие за размножение, рост и дифференцировку клеток.

Мутагенные факторы: физические (излучение, температура), химические, биологические (вирусы, вирусные паразитарные агенты).

 

67. Мутации. Классификация мутаций. Характеристика геномных, хромосомных и генных мутаций Результаты изменений функциональных генов. Возрастание генетического груза в популяциях живых организмов и значение этого процесса для будущего человеческой цивилизации.

Классификации мутаций.

· По причинам, вызвавшим мутации:

· Спонтанные (самопроизвольные). Происходят по действием естественных мутагенных факторов без вмешательства человека.

· Индуцированные. Результат направленного воздействия определенных мутагенных факторов.

· По мутировавшим клеткам:

· Генеративные. Происходят в половых клетках. Передаются по наследству.



· Соматические. Происходят в соматических клетках. По наследству передаются только при вегетативном размножении.

· По исходу для организма:

· Летальные. Несовместимые с жизнью.

· Полулетальные. Снижают жизнеспособность организма.

· Нейтральные. Не влияют на процессы жизнедеятельности.

· Положительные. Повышающие жизнеспособность. Возникают редко, но имеют большое значение для прогрессивной эволюции.

· По изменениям генетического материала:

· Геномные. Обусловлены изменениями числа хромосом. Обнаруживаются цитогенетическими методами. Всегда проявляются фенотипически.

· Полиплоидия (кратное гаплоидному увеличение числа хромосом (3n, 4n, 5n), имеет большое значение для селекции., гаплоидия). У млекопитающих и человека – это летальные мутации

· Гаплоидия (1n). Н-р, трутни у пчел. Жизнеспособность снижается. В данном случает проявляются все рецессивные гены. Для млекопитающих и человека мутация летальна.

· Анеуплоидия. Некратное гаплоидному уменьшение или увеличение числа хромосом (2n+\-1). Разновидности:

· Трисомия. 2n + 1. В генотипе 3 гомологичные хромосомы. Болезнь Дауна

· Моносомия. В наборе одна из пары гомологичных хромосом. 2n – 1. Моносомия по первым крупным парам хромосом для человека летальна.

· Нулесомия. Отсутствие пары хромосом. Летальная мутация.

· Хромосомные (оберации). Обусловлены изменением структуры хромосом. Могут быть внутри и межхромосомными. Выявляются цитогенетичесмкими методами.

· Внутрихромосные. Перестройки внтури хромосом

· Межхромосомные. Происходят между негомологичными хромосомами. Транслакация, дупликации.

· Генные (точечковые, трансгенации). Связаны с изменениями структуры гена (молекулы ДНК). В большинстве случаев проявляются фенотипически. Являются причиной нарушения обмена веществ, генных болезеней. Частота проявления – 1-2%. Выявляются биохимическими методами и методами рекомбинантной ДНК.

· Изменения структурных генов. Сдвиг рамки считывания. Приводит к миссенс-мутациям (изменению смысла кодонов и образованию других белков). Нонсенс-мутации – образование бессмысленных кодонов, не кодирующих аминокислоты.

· Изменения функциональных генов.

· Белок репрессор не подходит к гену-оператору. Структурные гены работают постоянно. Белки синтезируются все время

· Белок-репрессор не снимается индуктором. Структурные гены постоянно не работают. Синтеза белка нет.

· Нарушение чередований репрессий и индукций.

68. Ядерная и цитоплазматическая наследственность. Закономерности наследования признаков, контролируемых ядерными и цитоплазматическими генами.

Закономерности наследования признаков, контролируемых ядерными генами

Гены, расположенные в хромосомах, закономерно распределяются между дочерними клетками благодаря механизму митоза, который обеспечивает постоянную структуру кариотипа в ряду клеточных поколений. Мейоз и оплодотворение обеспечивают сохранение постоянного кариотипа в ряду поколений организмов, размножающихся половым путем. В результате набор генов, заключенный в кариотипе, также остается постоянным в ряду поколений клеток и организмов. Закономерное поведение хромосом в митозе, мейозе и при оплодотворении обусловливает закономерности наследования признаков, контролируемых ядерными генами.



Закономерности наследования внеядерных генов.

Цитоплазматическое наследование

Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов дает основание специально остановиться на их участии в формировании фенотипа в процессе индивидуального развития. Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем, что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии.

 

 

69. Генетическая инженерия, ее задачи, методы, возможности. Значение генетической инженерии в решении продовольственной проблемы, лечении наследственных заболеваний.

Генетическая инженерия — получение новых комбинаций генетического материала путем проводимых вне клетки манипуляций с молекулами нуклеиновых кислот и переноса созданных конструкций генов в живой организм, в результате которого достигается их включение и активность в этом организме и у его потомства.

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.

Наиболее распространенными методом генной инженерии является метод конструирования и переноса рекомбинантных ДНК.

Возможности:

· возможность переноса гена в новое для него генетическое окружение с дальнейшей его экспрессией, что ведет к изменению свойств организма, в геном которого вводится ген (например, создание продуцентов биологически активных веществ или трансгенных организмов ), а также осуществление генотерапии наследственных и приобретенных заболеваний путем искусственного замещения мутантных аллелей.

· стало реальным конструирование новых генов путем объединения in vitro как известных, так и новых, искусственно синтезированных последовательностей нуклеотидов. Этот подход используется в белковой инженерии для исследования функциональной значимости отдельных аминокислот и доменов в полипептидных цепях ферментов, а также для создания новых белков.

· В-третьих, в биотехнологии появилась возможность применять изолированные гены в составе генно-инженерных конструкций для получения пищевых продуктов и биологически активных веществ белковой природы.

·

 






Date: 2015-04-23; view: 633; Нарушение авторских прав

mydocx.ru - 2015-2020 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию