Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Общие сведения. Оптоэлектроникой называют научно-техническое направление, в котором для передачи, обработки и хранения информации используются электрические и оптические
Оптоэлектроникой называют научно-техническое направление, в котором для передачи, обработки и хранения информации используются электрические и оптические средства и методы. В оптоэлектронике световой луч выполняет те же функции управления, преобразования и связи, что и электрический сигнал в электрических цепях. Устройства оптоэлектроники обладают некоторыми существенными преимуществами по сравнению с чисто электронными устройствами. В них обеспечивается полная гальваническая развязка между входными и выходными цепями. Отсутствует обратное влияние приемника сигнала на его источник. Облегчается согласование между собой электрических цепей с разными входными и выходными сопротивлениями. Оптоэлектронные приборы имеют широкую полосу пропускания и преобразования сигналов, высокое быстродействие и большую информационную емкость оптических каналов связи (1013 - 1015 Гц). На оптические цепи не оказывают влияние различные помехи, вызванные электрическими и магнитными полями. К недостаткам оптоэлектронных компонентов относятся: низкая температурная и временная стабильность характеристик; сравнительно большая потребляемая мощность; сложность изготовления универсальных устройств для обработки информации; меньшие функциональные возможности по сравнению с ИМС, необходимость жестких требований к технологии изготовления. Оптоэлектронные приборы излучают и преобразуют излучение в инфракрасной, видимой или ультрафиолетовой областях спектра. Основным компонентом оптоэлектроники является пара с фотонной связью, называемая оптроном. Простейший оптрон можно представить четырехполюсником, состоящим из трех элементов: источник света - 1, световод - 2 и приемник света - 3 (рис.1). Входной сигнал в виде импульса или перепада входного тока возбуждает фотоизлучатель и вызывает световое излучение. Световой сигнал по световоду попадает в фотоприемник, на выходе которого образуется электрический импульс или перепад выходного тока. В оптронных устройствах в качестве источников света применяются обычно лампы накаливания, электролюминесцентные конденсаторы или светодиоды. В качестве приемников света используют фоторезисторы, фотодиоды, фототиристоры, фототранзисторы и различные комбинации этих приборов. Условные обозначения некоторых типов оптронов показаны на рис.2 (а) - диодный, б) - резисторный, в) - динисторный). Фотодиоды имеют структуру обычного р-n -перехода (рис.3), где а) - условное обозначение фотодиода, б) - структура фотодиода. Вследствие оптического возбуждения в р и n областях возникает неравновесная концентрация носителей заряда. На границе перехода неосновные носители заряда под влиянием электрического поля, перебрасываются через переход в область, где они являются основными носителями. Электрический ток, созданный ими есть полный фототок. Если р-n -переход разомкнут, то перенос носителей заряда, генерируемых светом, приводит к накоплению отрицательного в n -области и положительного в р -области зарядов. Новое равновесное состояние соответствует меньшей высоте потенциального барьера, равной (U к- Е ф). ЭДС Е ф, возникающую при этих процессах, на значение которой снижается потенциальный барьер U к в р-n -переходе, называют фотоэлектродвижущей силой (фото-ЭДС) В данной ситуации фотодиод работает в режиме фотогенератора, преобразуя световую энергию в электрическую. Фотодиод может работать совместно с внешним источником (рис.3.в). При освещении фотодиода поток неосновных носителей заряда через р-n- переход возрастает. Увеличивается ток во внешней цепи, определяемый напряжением источника и световым потоком.
Date: 2015-05-08; view: 588; Нарушение авторских прав |