Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Плотность энергетических уровней





Для того чтобы знать, как распределяются по энергиям электроны в кристалле, надо установить, как распределены внутри зон разрешенные квантовые состояния, а во-вторых, как они заполняются электронами, т.е. вероятность их заполнения.

Концентрацию электронов, имеющих энергии, заключенные в интервале от Е до Е+dЕ, можно представить так:

 

 

где – функция плотности энергетических состояний;

– вероятность заполнения энергетических уровней зарядоносите-

лями.

 

 

где – энергия электрона, отсчитанная от границы зоны;

– эффективная масса электрона, учитывающая энергетическую

связь его с полями частиц кристалла;

– элементарная ячейка пространства импульсов.

Электронный газ в металлах всегда вырожден. Реальные температуры катодов около 2000° С. В этом случае используют распределение Ферми-Дирака:

 

, (1)

где – энергия или уровень Ферми.

При этом уравнение концентрации электронов принимает вид:

 

 

Проанализируем это уравнение. При Т = О и Е > ЕF первый член знаменателя обращается в бесконечность, а вероятность заполнения электронами энергетических уровней (WE) и соответственно вся правая часть уравнения оказывается равной нулю.

Следовательно, при температуре абсолютного нуля в металле нет электронов с энергией больше ЕF.

При Т = О и Е < ЕF первый член знаменателя - нуль, вероятность заполнения электронами энергетических уровней (WE) оказывается равной единице и кривая распределения электронов по энергиям (кривая Т=0 на рис. 2.10) представляет собой обратную параболу.

Итак, у металлов константа ЕF имеет простой и наглядный физический смысл: это наибольшая энергия, которой обладают электроны при температуре абсолютного нуля.

При Т > О и Е = ЕF получим и

В результате приходим к очень важному для последующего изложения выводу, применимому не только к металлам, но также к диэлектрикам и полупроводникам: уровень Ферми – это такой уровень, вероятность заполнения которого электронами при любых температурах равна 1/2.

При Т > О и Е < ЕF величина (WE) несколько меньше единицы. Вместе с тем для энергий Е > ЕF появляется некоторая отличная от нуля вероятность заполнения энергетических уровней. Распределение валентных электронов металла по энергиям при Т > О соответствует кривой на рис. 2.10.

 

 

Рис. 2.10 – Распределение электронов по энергиям в металле

 

Вопросы распределения по энергиям носителей заряда в полупроводниках будут рассматриваться позднее. Мы же остановимся на вопросе расположения уровня Ферми в кристаллах.

В проводниках уровень Ферми располагается на уровне перехода из зоны проводимости в валентную зону.

У диэлектриков и собственных полупроводников уровень Ферми располагается в середине запрещенной зоны и практически не зависит от температуры.

У донорного полупроводника уровень Ферми при Т = О располагается посередине между донорным уровнем и дном зоны проводимости, а при повышении температуры он смещается вниз, причем тем сильнее, чем меньше концентрация донорной примеси.

У дырочного полупроводника уровень Ферми при Т = О располагается посередине между акцепторным уровнем и потолком валентной зоны, а при повышении температуры он смещается вверх, причем тем сильнее, чем меньше концентрация акцепторов.

 







Date: 2015-05-04; view: 906; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию