Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Практичні способи проведення дифузії
Дифузійне введення домішок в напівпровідник вперше було використане для створення p – n переходів. Цей спосіб використовується і зараз. Розроблено багато різних способів проведення дифузії. Найбільш широке застосування в планарній технології знайшов спосіб дифузії домішок в кремній в потоці газу – носія (спосіб відкритої труби). Як джерело дифузантів можуть використовуватися рідкі або газоподібні речовини. Схема установки показана на рисунку 2.
Рисунок 2 - Схема установки дифузії в потоці газу – носія для рідких (а) і газоподібних (б) джерел домішки: 1 – трубчата піч; 2 – кварцева труба; 3 – підкладки; 4 – посудина з рідким джерелом домішки.
Для випаровування рідкого джерела домішки достатньо підтримувати його температуру в інтервалі 20 – 40 ºС. Найбільш широке застосування знайшли галогеніди бору і фосфору. Наприклад, трихлористий фосфор оксохлорид фосфору і трибромистий бор . В кварцеву трубу направляються три потоки газу: основний потік азоту зі швидкістю слабкий потік такого ж газу, який попередньо проходить через рідкий дифузант і слабий потік кисню . При використанні рідких джерел наявність кисню в складі газу – носія має принципове значення, бо приводить до одержання оксидів домішки. Так, для в зоні дифузії проходять такі хімічні реакції: . При взаємодії тонкої плівки з утворюється сполука типу (боросилікатне скло). На поверхні при реакції проходить виділення дифундуючого в елементарного бору. Аналогічні реакції проходять для сполук і , які використовують для дифузії фосфору в кремній:
При використанні газоподібних джерел застосовують, як правило, гідриди домішок, наприклад: фосфін , діборан , арсин . В атмосфері реакційної камери відбувається розкладання фосфіну при температурі вище 440 ºC і утворення оксиду фосфору: На поверхні кремнію проходять реакції Позитивною особливістю такої дифузії є можливість досить просто регулювати поверхневу концентрацію в широких границях, змінюючи склад гідридів в інертному газі. Недолік методу полягає в токсичності газоподібних джерел. 2.6 Впровадження домішки у напівпровідники шляхом іонної імплантації
Метод іонного впровадження заключається в тому, що на поверхню напівпровідникової підкладки визначеної орієнтації подається пучок прискорених іонів домішки. При цьому використовують спеціальні гармати, в яких атоми домішки іонізуються і прискорюються в електричному полі до високих енергій. Іони проникають в глибину пластини. Розглянемо якісну картину імплаптації. Прискорені іони зіштовхуються з електронами та атомами напівпровідника і гальмуються. Згідно теоретичної моделі процесу іонний пучок, який падає на поверхню кристалу розкладається, на два: безладний та каналувальний. Безладний (невпорядкований) пучок має частинки, які ударяються об поверхню кристала поблизу регулярних атомів кристалічної гратки, на відстані, яка менша деякої критичної. Взаємодіючи з цими атомами, іони сильно розсіюються. Тому для безладного пучка кристал являється немов би аморфним тілом. Каналувальний пучок складається з частинок, які не мають зіштовхувань з поверхневими атомами, можуть далі рухатися по міжвузловому простору кристалічної гратки, вздовж атомних площин, немов би по каналам. Як тільки іон попадає в канал, то на нього починають діяти потенційні сили атомних рядів і направляти його в центр каналу. Завдяки цьому іон досить глибоко проникає в підкладку. Це призводить до появи «хвостів» концентрації атомів домішки і «хвостів» концентрації вільних носіїв заряду. Зменшити вплив цього ефекту можна при зміні кута нахилу пучка іонів щодо підкладки. При цьому кут повинен бути меншим . Зменшити цей вплив можна також за допомогою покриття аморфними шарами і . При відсутності ефекту каналування розсіювання іонів носить випадковий характер і розподіл їх пробігу описується функцією Гауса. Розподіл концентрації домішки дається виразом , де доза опромінювання, рівна кількості іонів що бомбардують одиницю поверхні за час впровадження; середня проекція пробігу; середнє квадратичне відхилення пробігу.
Проникнення домішки в підкладку показано на рис. 1.
Рисунок 1 - Глибина проникнення домішки в підкладку.
- середня проекція пробігу; R- середнє квадратичне відхилення проекції пробігу.
Спрощена схема установки для іонного бомбардування показана на рис. 2.
Рисунок 2 - Установка для іонного бомбардування
Такі установки забезпечують глибину залягання р - n переходів до 0,2 - 0,4 мкм. Для отримання іонів бору використовуються галогени бору чи , які у вигляді пари потрапляють в джерело через натікачі. Для отримання іонів фосфору використовують червоний порошкоподібний чи кристалічний фосфор, а також РН і PF і інші. Для локального введення домішки в напівпровідникову пластину застосовують контактне або проекційне маскування. Переваги методу іонного легування такі: - забезпечується відтворення точної дози суміші при бомбардуванні; - досягається висока точність контролю глибини залягання p-n- переходу (до 0.02 мкм); - змешується тривалість проведення процесу до кількох хвилин при груповому завантаженні установки; - існує можливість створювати будь-які профілі розподілу домішки; - легко формуються приховані леговані шари; - забезпечується суміщення процесу в одній технологічній установці з іонно-плазмовим осадженням, іонним травленням та іншими операціями.
Серед недоліків і обмежень методу іонного легування слід виділити такі: - складність відтворення глибоких легованих ділянок; - складність керування іонно-променевими установками; - зниження якості обробки пластин великих діаметрів через розфокусування відхиленого променя.
Date: 2015-06-07; view: 698; Нарушение авторских прав |