Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Максвелл ввел понятие полного тока,равного сумме токов проводимости (а также конвекционных токов) и смещения.Плотность полного тока 10 page





Практически эта идея может быть осуществлена с помощью принципиальной схемы, показанной на рис. 267, а. Лазерный пучок делится на две части, причем одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предмет­ная волны, являясь когерентными и накладываясь друг на друга, образуют на фотопла­стинке интерференционную картину. После проявления фотопластинки и получается голограмма — зарегистрированная на фотопластинке интерференционная картина, об­разованная при сложении опорной и предметной волн.

Для восстановления изображения (рис. 267, б) голограмма помещается в то же самое положение, где она находилась до регистрации. Ее освещают опорным пучком того же лазера (вторая часть лазерного пучка перекрывается диафрагмой). В резуль­тате дифракции света на интерференционной структуре голограммы восстанавливается копия предметной волны, образующая объемное (со всеми присущими предмету свойствами) мнимое изображение предмета, расположенное в том месте, где предмет находился при голографировании. Оно кажется настолько реальным, что его хочется потрогать. Кроме того, восстанавливается еще действительное изображение предмета, имеющее рельеф, обратный рельефу предмета, т. е. выпуклые места заменены вогну­тыми, и наоборот (если наблюдение ведется справа от голограммы).

Обычно пользуются мнимым голографическим изображением, которое по зритель­ному восприятию создает полную иллюзию существования реального предмета. Рас­сматривая из разных положений объемное изображение предмета, даваемое голограммой, можно увидеть более удаленные предметы, закрытые более близкими из них (заглянуть за ближние предметы). Это объясняется тем, что, перемещая голову в сто­рону, мы воспринимаем изображение, восстановленное от периферической части голог­раммы, на которую при экспонировании падали также и лучи, отраженные от скрытых предметов. Голограмму можно расколоть на несколько кусков. Но даже малая часть голограммы восстанавливает полное изображение. Однако уменьшение размеров голо­граммы приводит к ухудшению четкости получаемого изображения. Это объясняется тем, что голограмма для опорного пучка служит дифракционной решеткой, а при уменьшении числа штрихов дифракционной решетки (при уменьшении размеров голог­раммы) ее разрешающая способность уменьшается.

Методы голографии (запись голограммы в трехмерных средах, цветное и панорам­ное голографирование и т. д.) находят все большее развитие. Применения голографии разнообразны, но наиболее важными, приобретающими все большее значение, являют­ся запись и хранение информации. Методы голографии позволяют записывать в сотни раз больше страниц печатного текста, чем методы обычной микрофотографии. По подсчетам, на фотопластинку размером 32´32 мм можно записать 1024 голограммы (площадь каждой из них 1 мм2), т. е. на одной фотопластинке можно «разместить» книгу объемом свыше тысячи страниц. В качестве будущих разработок могут служить ЭВМ с голографической памятью, голографический электронный микроскоп, голографические кино в телевидение, голографическая интерферометрия и т. д.

Задачи

23.1. Плоская световая волна с длиной волны 0,6 мкм падает нормально на диафрагму с круг­лым отверстием диаметром 1 см. Определить расстояние от точки наблюдения до отвер­стия, если отверстие открывает: 1) две зоны Френеля; 2) три зоны Френеля. [1) 20,8 м; 2) 13,9 м]

23.2. Дифракционная картина наблюдается на расстоянии 1 м от точечного источника монохро­матического света (l=0,5 мкм). Посередине между источником света и экраном находится диафрагма с круглым отверстием. Определить радиус отверстия, при котором центр дифракционной картины на экране будет наиболее темным. [0,5 мм]

23.3. На щель шириной 0,2 мм падает нормально монохроматический свет с длиной волны 0,5 мкм. Экран, на котором наблюдается дифракционная картина, расположен параллель­но щели на расстоянии 1 м. Определить расстояние между первыми дифракционными минимумами, расположенными по обе стороны центрального фраунгоферова максимума. [5 мм]

23.4. Определить число штрихов на 1 мм дифракционной решетки, если углу p/2 соответствует максимум пятого порядка для монохроматического света с длиной волны 0,5 мкм. [400 мм–1]

23.5. Узкий параллельный пучок монохроматического рентгеновского излучения падает на грань кристалла с расстоянием 0,28 нм между его атомными плоскостями. Определить длину волны рентгеновского излучения, если под углом 30° к плоскости грани наблюдается дифракционный максимум второго порядка. [140 пм]


23.6. Определить постоянную дифракционной решетки, если она в первом порядке разрешает две спектральные линии калия (l1=578 нм и l2=580 нм). Длина решетки 1 см. [34,6 мкм]

Глава 24 Взаимодействие электромагнитных волн с веществом

§ 185. Дисперсия света

Дисперсией света называется зависимость показателя преломления n вещества от частоты n (длины волны l) света или зависимость фазовой скорости v световых волн (см. § 154) от его частоты n. Дисперсия света представляется в виде зависимости

(185.1)

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму. Первые экспериментальные наблюдения дисперсии света принад­лежат И. Ньютону (1672 г.).

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления п (рис. 268) под углом a1. После двукратного преломления (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол j. Из рисунка следует, что

(185.2)

Предположим, что углы А иa1 малы, тогда углы a2, b 1 и b 2 будут также малы и вместо синусов этих углов можно воспользоватьсяих значениями. Поэтому a1/ b 1= n, b 2/a2=1/ n, а таккак b 1 +b 2= А, то a2 =b 2 n=n(A–b 1 )=n (A– a1 /n)=nA– a1, откуда

(185.3)

Из выражений (185.3) и (185.2) следует, что

(185.4)

т. е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

Из выражения (185.4) вытекает, что угол отклонения лучей призмой зависит от величины n –1, а n — функция длины волны, поэтому лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т. е. пучок белого света за призмой разлагается в спектр, что и наблюдалось И. Ньютоном. Таким образом, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

1. Дифракционная решетка разлагает падающий свет непосредственно по длинам воли (см. (180.3)), поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны. Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения длины волны света надо знать зависимость n = f (l) (185.1).

2. Составные цвета в дифракционном и призматическом спектрах располагаются различно. Из (180.3) следует, что в дифракционной решетке синус угла отклонения пропорционален длине волны. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи в спектр по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны уменьшается (рис. 269). Поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.

Величина

называемая дисперсией вещества, показывает, как быстро изменяется показатель прело­мления с длиной волны. Из рис. 269 следует, что показатель преломления для прозрач­ных веществ с уменьшением длины волны увеличивается; следовательно, величина dn/dl по модулю также увеличивается с уменьшением l. Такая дисперсия называется нормальной. Как будет показано ниже, ход кривой n (l) — кривой дисперсии — вблизи линий и полос поглощения будет иным: n уменьшается с уменьшением l. Такой ход зависимости n от l называется аномальной дисперсией.


На явлении нормальной дисперсии основано действие призменных спектрографов. Несмотря на их некоторые недостатки (например, необходимость градуировки, различ­ная дисперсия в разных участках спектра) при определении спектрального состава света, призменные спектрографы находят широкое применение в спектральном анали­зе. Это объясняется тем, что изготовление хороших призм значительно проще, чем изготовление хороших дифракционных решеток. В призменных спектрографах также легче получить большую светосилу.

§ 186. Электронная теория дисперсии светя

Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды

где e — диэлектрическая проницаемость среды, m — магнитная проницаемость. В оп­тической области спектра для всех веществ m»1, поэтому

(186.1)

Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n, являясь переменной (см. § 185), остается в то же время равной определенной постоян­ной . Кроме того, значения n, получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения элект­ромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромаг­нитных волн с заряженными частицами, входящими в состав вещества и совершающи­ми вынужденные колебания в переменном электромагнитном поле волны.

Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости e от частоты w световых волн. Диэлектрическая проницаемость вещества, по определению (см. (88.6) и (88.2)), равна

где { — диэлектрическая восприимчивость среды, e 0 — электрическая постоянная, Р — мгновенное значение поляризованности. Следовательно,

(186.2)

т.е. зависит от Р. В данном случае основное значение имеет электронная поляризация, т.е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока ( 1015 Гц).

В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны — оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р=ех, где е — заряд электрона, х — смещение электрона под действием элект­рического поля световой волны. Если концентрация атомов в диэлектрике равна n 0, то мгновенное значение поляризованности


(186.3)

Из (186.2) и (186.3) получим

(186.4)

Следовательно, задача сводится к определению смещения х электрона под действием внешнего поля Е. Поле световой волны будем считать функцией частоты w, т. е. изменяющимся по гармоническому закону: Е = Е 0 cos w t.

Уравнение вынужденных колебаний электрона (см. §147) для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии падающей волны) запишется в виде

(186.5)

где F 0 = еЕ 0 амплитудное значение силы, действующей на электрон со стороны поля волны, — собственная частота колебаний электрона, т — масса электрона. Решив уравнение (186.5), найдем e = n 2 в зависимости от констант атома (е, т, w 0) и частоты w внешнего поля, т.е. решим задачу дисперсии. Решение уравнения (186.5) можно записать в виде

(186.6)

где

(186.7)

в чем легко убедиться подстановкой (см. (147.8)). Подставляя (186.6) и (186.7) в (186.4), получим

(186.8)

Если в веществе имеются различные заряды еi, совершающие вынужденные колебания с различными собственными частотами w 0 i , то

(186.9)

где т, — масса i- го заряда.

Из выражений (186.8) и (186.9) вытекает, что показатель преломления n зависит от частоты w внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света, хотя и при указанных выше допущениях, которые в даль­нейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от w = 0 до w = w 0 n 2 больше единицы и возрастает с увеличением w (нормальная дисперсия); при w = w 0 n 2 = ±¥; в области от w = w 0 до w = ¥ n 2 меньше единицы и возрастает от –¥ до 1 (нормальная дисперсия). Перейдя от n 2 к n, получим, что график зависимости n от w имеет вид, изображенный на рис. 270. Такое поведение n вблизи w 0 результат допущения об отсутствии сил сопротивления при колебаниях электро­нов. Если принять в расчет и это обстоятельство, то график функции n (w) вблизи w 0 задастся штриховой линией АВ. Область АВ — область аномальной дисперсии (n убывает при возрастании w), остальные участки зависимости n от w описывают нормальную дисперсию (n возрастает с возрастанием w).

Российскому физику Д. С. Рождественскому (1876—1940) принадлежит классичес­кая работа по изучению аномальной дисперсии в парах натрия. Он разработал ин­терференционный метод для очень точного измерения показателя преломления паров и экспериментально показал, что формула (186.9) правильно характеризует зависи­мость n от w, а также ввел в нее поправку, учитывающую квантовые свойства света и атомов.

§ 187. Поглощение (абсорбция) света

Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается.

Поглощение света в веществе описывается законом Бугера*:

(187.1)

где I 0 и I — интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, a — коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х= 1 /a интенсивность света I по сравнению с I 0 уменьшается в е раз.

* П. Бугер (1698—1758) — французский ученый.

 

Коэффициент поглощения зависит от длины волны l (или частоты w) и для различных веществ различен. Например, одноатомные газы и пары металлов (т.е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно 10–12—10–11 м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молеку­лах, характеризуется полосами поглощения (примерно 10–10—10–7 м).

Коэффициент поглощения для диэлектриков невелик (примерно 10–3—10–5 см–1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда a резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т.е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлени­ем резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

Коэффициент поглощения для металлов имеет большие значения (примерно 103—105 см–1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превраща­ясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.

На рис. 271 представлены типичная зависимость коэффициента поглощения a от длины волны света l и зависимость показателя преломления n от l в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается ано­мальная дисперсия (n убывает с уменьшением l). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.

Зависимостью коэффициента поглощения от длины волны объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители, растворы красителей и т. д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.

Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и стро­ением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.

§ 188. Эффект Доплера

Эффект Доплера в акустике (см. § 159) объясняется тем, что частота колебаний, воспринимаемых приемником, определяется скоростями движения источника колеба­ний и приемника относительно среды, в которой происходит распространение звуко­вых волн. Эффект Доплера наблюдается также и при движении относительно друг друга источника и приемника электромагнитных волн. Таккак особой среды, служащей носителем электромагнитных волн, не существует, то частота световых волн, вос­принимаемых приемником (наблюдателем), определяется только относительной ско­ростью источника и приемника (наблюдателя). Закономерности эффекта Доплера для электромагнитных волн устанавливаются на основе специальной теории относитель­ности.

Согласно принципу относительности Эйнштейна (см. § 35), уравнение световой волны во всех инерциальных системах отсчета одинаково по форме. Используя преоб­разования Лоренца (см. § 36), можно получить уравнение волны, посылаемой источни­ком, в направлении приемника в другой инерциальной системе отсчета, а следователь­но, и связать частоты световых воли, излучаемых источником (n 0) и воспринимаемых приемником (n). Теория относительности приводит к следующей формуле, описыва­ющей эффект Доплера для электромагнитных волн в вакууме:

(188.1)

где v — скорость источника света относительно приемника, с — скорость света в ваку­уме, b=v/c, q — угол между вектором скорости v и направлением наблюдения, из­меряемый в системе отсчета, связанной с наблюдателем. Из выражения (188.1) следует, что при q = 0

(188.2)

Формула (188.2) определяет так называемый продольный эффект Доплера, наблюда­емый при движении приемника вдоль линии, соединяющей его с источником. При малых относительных скоростях v (v <<c), разлагая (188.2) в ряд по степеням b и пpeнeбрегая членом порядка b 2, получим

(188.3)

Следовательно, при удалении источника и приемника друг от друга (при их положительной относительной скорости) наблюдается сдвиг в более длинноволновую область (n < n 0, l > l 0) — так называемое красное смещение. При сближении же ис­точника и приемника (при их отрицательной относительной скорости) наблюдается сдвиг в более коротковолновую область ((n > n 0, l < l 0) так называемое фиолетовое смещение.

Если q = p /2, то выражение (188.1) примет вид

(188.4)

Формула (188.4) определяет так называемый поперечный эффект Доплера, наблю­даемый при движении приемника перпендикулярно линии, соединяющей его с источником.

Из выражения (188.4) следует, что поперечный эффект Доплера зависит от b 2, т.е. при малых b является эффектом второго порядка малости по сравнению с продольным эффектом, зависящим от b (см. (188.3)). Поэтому обнаружение поперечного эффекта Доплера связано с большими трудностями. Поперечный эффект, хотя и много меньше продольного, имеет принципиальное значение, так как не наблюдается в акустике (при v << с из (188.4) следует, что n = n 0!), и является, следовательно, релятивистским эффек­том. Он связан с замедлением течения времени движущегося наблюдателя. Экс­периментальное обнаружение поперечного эффекта Доплера явилось еще одним под­тверждением справедливости теории относительности; он был обнаружен в 1938 г. в опытах американского физика Г. Айвса.

Продольный эффект Доплера был впервые обнаружен в 1900 г. в лабораторных условиях русским астрофизиком А. А. Белопольским (1854—1934) и повторен в 1907 г. русским физиком Б. Б. Голицыным (1862—1919). Продольный эффект Доплера ис­пользуется при исследовании атомов, молекул, а также космических тел, так как по смещению частоты световых колебаний, которое проявляется в виде смещения или уширения спектральных линий, определяется характер движения излучающих частиц или излучающих тел. Эффект Доплера получил широкое распространение в радиотех­нике и радиолокации, например в радиолокационных измерениях расстояний до движу­щихся объектов.

§ 189. Излучение Вавилова — Черенкова

Российский физик П. А. Черенков (1904—1990), работавший под руководством Вави­лова, показал, что при движении релятивистских заряженных частиц в среде с постоян­ной скоростью v, превышающей фазовую скорость света в этой среде, т. е. при условии v>c/n (n— показатель преломления среды), возникает электромагнитное излучение, названное впоследствии излучением (эффектом) Вавилова — Черенкова. Природа дан­ного излучения, обнаруженного для разнообразных веществ, в том числе и для чистых жидкостей, подробно изучалась С. И. Вавиловым. Он показал, что данное свечение не является люминесценцией (см. § 245), как считалось ранее, и высказал предположение, что оно связано с движением свободных электронов сквозь вещество.

Излучение Вавилова — Черенкова в 1937 г. было теоретически объяснено российс­кими учеными И. Е. Таммом (1895—1971) и И. М. Франком (р. 1908) (Черенков, Тамм и Франк в 1958 г. удостоены Нобелевской премии).

Согласно электромагнитной теории, заряженная частица (например, электрон) излучает электромагнитные волны лишь при движении с ускорением. Тамм и Франк показали, что это утверждение справедливо только до тех пор, пока скорость заряжен­ной частицы не превышает фазовой скорости с / n электромагнитных волн в среде, в которой частица движется. Если частица обладает скоростью v>c/n, то, даже двигаясь равномерно, она будет излучать электромагнитные волны. Таким образом, согласно теории Тамма и Франка, электрон, движущийся в прозрачной среде со скоростью, превышающей фазовую скорость света в данной среде, должен сам излу­чать свет.

Отличительной особенностью излучения Вавилова — Черенкова является его рас­пространение не по всем направлениям, а лишь по направлениям, составляющим острый угол q c траекторией частицы, т. е. вдоль образующих конуса, ось которого совпадает с направлением скорости частицы. Определим угол q:

(189.1)

Возникновение излучения Вавилова — Черенкова и его направленность истолкованы Франком и Таммом на основе представлений об интерференции света с использовани­ем принципа Гюйгенса.

На основе излучения Вавилова — Черенкова разработаны широко используемые экспериментальные методы для регистрация частиц высоких энергий и определения их свойств (направление движения, величина и знак заряда, энергия). Счетчики для регистрации заряженных частиц, в которых используется излучение Вавилова — Чере­нкова, получили название черенковских счетчиков. В этих счетчиках частица регист­рируется практически мгновенно (при движении заряженной частицы в среде со скоро­стью, превышающей фазовую скорость света в данной среде, возникает световая вспышка, преобразуемая с помощью фотоэлектронного умножителя (см. § 105) в им­пульс тока). Это позволило в 1955 г. итальянскому физику Э. Сегре (р. 1905) открыть в черенковском счетчике короткоживущую античастицу — антипротон.

Задачи

24.1. На грань стеклянной призмы (n =1,5) нормально падает луч света. Определить угол отклонения луча призмой, если ее преломляющий угол равен 25°. [14°21’]

24.2. При прохождении света в некотором веществе пути х его интенсивность уменьшилась в два раза. Определить, во сколько раз уменьшится интенсивность света при прохождении им пути 4 х. [В 16 раз]

24.3. Источник монохроматического света с длиной волны l 0=0,6 мкм движется по направле­нию к наблюдателю со скоростью v =0,15 с (с — скорость света в вакууме). Определить длину волны l, которую зарегистрирует приемник. [516 нм]

24.4. Определить минимальную кинетическую энергию (в мегаэлектрон-вольтах), которой дол­жен обладать электрон, чтобы в среде с показателем преломления п =1,5 возникло излучение Вавилова — Черенкова. [0,17 МэВ]







Date: 2015-11-15; view: 322; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.028 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию