Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Аморфное состояние полимеров





Стеклообразное состояние аморфного полимера сравнивают обычно с состоянием переохлажденной жидкости, высокая вязкость которой исключает ее свободное течение, превращая в твердое физическое тело. Стеклообразное состояние у полимеров наблюдается тогда, когда их сегменты «заморожены», то есть лишены подвижности. Этого можно достичь понижением температуры. При стекловании между макромолеку­лами не возникает новых типов связей. В затвердевшем полимере наблюдается ближний порядок в расположении отдельных частей макромолекул.

Стеклообразный полимер — это твердый хрупкий материал, в макромолекулах которого лишь атомы или их группы совершают колебательные движения около по­ложений равновесия.

С повышением температуры приток тепловой энергии может оказаться достаточным, чтобы началось движение более крупных фрагментов — сегментов. Внешне это проявляется в том, что наблюдается постепенный переход от свойств твердого, хрупкого материала к свойствам более мягкого пластичного тела. Среднее значение некоторой области температур, в которой наступает сегментальная подвижность макромолекул, называют температурой стеклования Тс (см. рис. 1.4). Поскольку гибкость цепи и размер сегмента взаимосвязаны и зависят от внутри- и межмолекулярного взаимодействия в полимере, то факторы, ответственные за его увеличение, будут повышать Тс и, наоборот, Тс будет смещаться в область более низких температур при ослаблении межмолекулярных сил:


 

 

У линейных полимеров температура стеклования зависит от молекулярной массы, увеличиваясь с ее ростом. У сетчатых полимеров образование сшитой структуры приводят к повышению Тс, тем большему, чем гуще пространственная сетка.

Процесс стеклования сопровождается изменением многих свойств полимера — теплопроводности, электрической проводимости, диэлектрической проницаемости, показателя преломления, причем эти свойства меняются скачкообразно при Тс.

При понижении температуры ниже Тс в полимере наблюдается дальнейшее умень­шение теплового движения кинетических фрагментов макромолекул. Чтобы вызвать теперь даже небольшую деформацию застеклованного полимера, нужно приложить к нему большую механическую нагрузку. При этом полимер ведет себякак упругое или упруго-вязкое тело. При дальнейшем понижении температуры полимер разрушается как хрупкое тело при практически исчезающей деформации. Температуру, при которой происходит хрупкое разрушение полимера, называют температурой хрупкости Тхр. Полимеры, как правило, эксплуатируются в стеклообразном состоянии, которому соответствует участок I на термомеханической кривои.

 

Высокоэластическое состояние (ВЭС) полимера характеризуется относительно высокой подвижностью сегментов макромолекул. Оно проявляется только тогда, когда макромолекулы имеют значительную длину (большую молекулярную массу) и особенно свойственно гибкоцепным полимерам, характеризуемым небольшими силами межмолекулярного взаимодействия.

В случае значительного межмолекулярного взаимодействия (диполи, водородная связь) ВЭС наблюдается при повышенных температурах, то есть когда действие межмолекулярных сил ослабевает. Сравнительная легкость принятия макромолекулой самых различных конформаций под влиянием внешнего механического напряжения объясняет большие деформации выше Тс (сотни процентов). После снятия нагрузки благодаря тепловому перемещению сегментов макромолекулы возвращаются к исходным конформациям и достигнутая высокоэластическая деформация исчезает, то есть она носит обратимый характер. Если процесс деформации линейного полимера осуществлять медленно, так, чтобы макромолекулы успели перейти из одной равновесной конформации в другую, вместо высокоэластического состояния полимер окажется в состоянии вязкотекучем.

У термопластов высокоэластическое состояние наблюдается в области температур Тс - Тт, где Тт — температура текучести (плавления) полимера (рис. 1.4, участок II).

В вязкотекучем состоянии термопластичный полимер представляет собой жидкость и способен необратимо течь под воздействием сравнительно небольших внешних усилий, то есть проявлять пластическую деформацию. При течении происходит перемещение отдельных макромолекул относительно друг друга. Деформация в вязкотекучем состоянии может развиваться бесконечно и носит необратимый характер. Вязкотекучему состоянию соответствует участок III на рис. 1.4.

Некоторые сетчатые полимеры также способны переходить в ВЭС. Однако при повышении температуры выше Тс они сначала размягчаются, а затем необратимо раз­рушаются.







Date: 2015-11-15; view: 932; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию