Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Павел Алексеевич Черенков
(1904–1990)
Павел Алексеевич Черенков родился 28 июля 1904 года в селе Новая Чигла Воронежской области в семье крестьянина. По окончании средней школы Павел поступает в Воронежский государственный университет, который окончил в 1928 году. После этого Черенков поступил вначале на подготовительное, а затем в 1932 году на основное отделение Физического (тогда Физико‑математического) института Академии наук СССР. В 1930 году Черенков женился на Марии Путинцевой, дочери профессора русской литературы. У них было двое детей. Начало научной деятельности Черенкова относится к 1932 году, когда он под руководством С.И. Вавилова приступил к изучению люминесценции растворов ураниловых солей под действием гамма‑лучей. Поначалу в полном соответствии с законом Вавилова–Стокса у Черенкова огромные гамма‑кванты источника излучения преобразовались в малые кванты видимого света, то есть люминесцировали. «Интересно, – рассуждал ученый, – как она изменится, если увеличить концентрацию? А если, наоборот, разбавить раствор водою? Важна, конечно, не общая картина, а точно выраженный физический закон». До поры до времени никаких сюрпризов: меньше растворено солей – меньше люминесценция. Далее рассказывает В.Р. Келер: «Наконец в растворе остаются лишь следы уранила. Теперь уж, разумеется, никакого свечения быть не может. Но что это?! Черенков не верит своим глазам. Уранила осталась гомеопатическая доза, а свечение продолжается. Правда, очень слабое, но продолжается. В чем дело? Черенков выливает жидкость, тщательно промывает сосуд и наливает в него дистиллированную воду. А это что такое? Чистая вода светится так же, как и слабый раствор. Но ведь до сих пор все были уверены, что дистиллированная вода неспособна к люминесценции. Вавилов советует аспиранту попробовать поставить вместо стеклянного сосуд из другого материала. Черенков берет платиновый тигель и наливает в него чистейшую воду. Под дном сосуда помещается ампула со ста четырьмя миллиграммами радия. Гамма‑лучи вырываются из крошечного отверстия ампулы и, пробивая платиновое дно и слой жидкости, попадают в объектив прибора, нацеленного сверху на содержимое тигля. Снова приспособление к темноте, снова наблюдение, и… опять непонятное свечение. – Это не люминесценция, – твердо говорит Сергей Иванович. – Это что‑то другое. Какое‑то новое, неизвестное пока науке оптическое явление. Вскоре всем становится ясно, что в опытах Черенкова имеют место два свечения. Одно из них – люминесценция. Оно, однако, наблюдается лишь в концентрированных растворах. В дистиллированной воде под влиянием гамма‑облучения мерцание вызывается иной причиной… А как поведут себя другие жидкости? Может быть, дело не в воде? Аспирант наполняет тигель по очереди различными спиртами, толуолом, другими веществами. Всего он испытывает шестнадцать чистейших жидкостей. И слабое свечение наблюдается всегда. Поразительное дело! Оно оказывается очень близким по интенсивности для всех материалов. Четыреххлористый углерод светится всех сильнее, изобутановый спирт – всех слабее, но разница их свечений не превышает 25 процентов. Черенков пытается погасить свечение особыми веществами, считающимися сильнейшими гасителями обычной люминесценции. Он добавляет к жидкости азотнокислое серебро, йодистый калий, анилин… Эффекта (гасительного) никакого: свечение продолжается. Что делать? По совету руководителя он нагревает жидкость. На люминесценцию это всегда влияет сильно: она ослабевает и даже прекращается совсем. Но в данном случае яркость свечения не меняется ничуть. Выходит, здесь действительно какое‑то особое, доныне неизвестное явление? Какое же?» В 1934 году в «Докладах Академии наук СССР» появляются первые два сообщения о новом виде излучения: Черенкова, излагающего подробно результаты экспериментов, и Вавилова, пытающегося их объяснить. Таинственное свечение можно было видеть только в пределах узкого конуса, ось которого совпадала с направлением гамма‑излучения. Учтя это обстоятельство, молодой ученый поместил свой прибор в сильное магнитное поле. И тут же убедился, что поле отклоняет узкий конус свечения в сторону. Но это возможно лишь для электрически заряженных частиц, например электронов. Чтобы окончательно убедиться в этом, Черенков использовал другой вид излучения – бета‑лучи, представляющих собою поток быстрых электронов. Он облучил ими те же жидкости, что и раньше, и получил такой же световой эффект, как при гамма‑облучении. Так было выяснено, что загадочное оптическое явление возникает только там, где налицо движение быстрых электронов. Объяснение механизма преобразования движения электронов в движение фотонов необычного свечения дали в 1937 году советские физики Франк и Тамм. Электроны летят быстрее, чем распространяется свет в данной среде, и в результате возникает необычное явление: порожденные электронами электромагнитные волны отстают от своих родителей и вызывают свечение. Вскоре появилась крылатая фраза: «Греки слышали голоса звезд, а в черенковском свечении слышны голоса электронов. Это поющие электроны». В 1935 году Черенков окончил аспирантуру и защитил кандидатскую диссертацию, после чего получил должность старшего научного сотрудника Физического института им. Лебедева АН СССР (ФИАН). Он продолжал исследовать открытое им свечение. В 1936 году он установил характерное свойство нового вида излучения – своеобразную пространственную асимметрию («черенковский конус»). После появления количественной теории явления, разработанной Таммом и Франком, Черенков в серии тонких экспериментов подтверждает ее во всех деталях. Фундаментальные работы Черенкова по исследованию открытого им излучения заряженных частиц, движущихся со сверхсветовой скоростью, явились значительным вкладом в мировую науку и признаны классическими. «Помимо принципиального научного значения, излучения Черенкова имеют и большую практическую ценность, – пишет И.М. Дунская. – Исключительно важна его роль в физике высоких энергий. При движении быстрой частицы в среде возникает направленная световая вспышка, которую регистрируют с помощью фотоумножителя. Такие счетчики используются как для обнаружения быстрых заряженных частиц, так и для определения их свойств: направления движения, величины заряда, скорости и т д. Счетчики Черенкова, благодаря характерным особенностям излучения, существенно расширяют возможности эксперимента и позволяют выполнить эксперименты, невозможные при использовании обычных люминесцентных счетчиков. В частности, черенковское излучение было использовано в опытах по обнаружению антипротона. Оно позволяет также наблюдать наиболее быстрые частицы космических лучей». За работы по открытию и изучению этого явления Черенкову совместно с Вавиловым, Таммом и Франком сначала в 1946 году присудили Государственную премию, а в 1958 году (уже после смерти Вавилова) Черенков, Тамм и Франк были удостоены звания Лауреатов Нобелевской премии по физике. В послевоенные годы Черенков некоторое время занимался исследованиями космических лучей, а также принимал руководящее участие в разработке и сооружении ускорителей легких частиц. Так, в январе 1948 года под его руководством осуществлен запуск первого в СССР бетатрона. Одновременно Черенков принимает участие в работах по проектированию и сооружению синхротрона ФИАН на 250 МэВ, за что в 1951 году получил Государственную премию. Вскоре после запуска синхротрона ученый принял руководство над всеми работами по его усовершенствованию, что позволило развернуть работы по изучению электромагнитных взаимодействий в области фотонов больших энергий. В возглавляемой Черенковым лаборатории фотомезонных процессов удалось получить целый ряд интереснейших результатов по изучению процессов фоторасщепления гелия, фотообразования пи‑мезонов, фоторасщепления некоторых легких ядер методом наведенной активности. В середине пятидесятых годов Черенков, совместно с И.В. Чувило, экспериментально исследовал фотоделение ядер тяжелых элементов. Затем под руководством Павла Алексеевича был успешно разработан новый метод накопления и получения встречных электрон‑позитронных пучков. В 1963–1965 годах проводились детальные исследования этого метода, а в начале 1966 года принципиальная возможность его была проверена экспериментально на 280 МэВ синхротроне ФИАН. Таким образом, впервые в практике физического эксперимента были получены встречные пучки электронов и позитронов. «Работы по накоплению и получению встречных пучков в ускорителях имеют первостепенное значение для физики высоких энергий, – отмечает И.М. Дунская. – Использование этого метода позволяет перевести действующие ускорители в режим накопления и тем самым на основе уже имеющейся экспериментальной базы перейти к исследованиям взаимодействий в области высоких и сверхвысоких энергий. Этот метод был впоследствии использован для получения встречных пучков на крупнейшем электронном ускорителе в Кембридже (США)». В 1964 году Павла Алексеевича избрали членом‑корреспондентом Академии наук СССР, а в 1970 году – действительным членом Академии наук СССР. В 1977 году за цикл работ по исследованию расщепления легких ядер гамма‑квантами высоких энергий методом камер Вильсона, действующих в мощных пучках электронных ускорителей, Черенков удостоен Государственной премии СССР. Кроме научной деятельности Черенков вел большую педагогическую работу, сначала с 1948 года в должности профессора Московского энергетического института, а с 1951 года и Московского инженерно‑физического института. Он дал путевку в жизнь большому числу исследователей.
Date: 2015-11-15; view: 476; Нарушение авторских прав |