Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Схема отношений





Как уже отмечалось в п. 6.2.3, реляционная модель описывает представление данных в виде двумерной таблицы, называемой отношением. Наименованиями столбцов этой таблицы служат имена атрибутов. Рассмотрим формализованное описание соответствующих понятий.

ПустьA1, A2,…, An имена атрибутов. Каждому имени атрибута Ai соответствует допустимое множество значений, которые может принимать атрибут Ai. Это множество значений Di называется доменом атрибута Ai, n i, 1 =. По определению, домены являются непустыми конечными или счетными множествами. Уточним, что в теории реляционных баз данных домен рассматривается как множество значений одного (причем простого) типа данных. Понятию домена Di соответствует множество значений, стоящих в столбце Ai рассматриваемой таблицы.

Схемой отношения R {A1, A2, …, An} называется конечное множество имен атрибутов {A1, A2, …, An}, причем атрибут Ai принимает значение из множества Di (i=1, 2,…n), где n – арность отношения.

Понятию «схема отношения» соответствует описание структуры двумерной таблицы (имена столбцов и допустимые множества значений).

Пусть D = D1∪ D2∪…∪Dn.

Отношением r со схемой R называется конечное множество отображений {t1, t2,…, tp} из множества R: {A1, A2, …, An} в множество D:{ D1∪ D2∪…∪Dn }, таких, что tk(Ai) ∈ Di, p k, 1 =; n i, 1 =.

Отображение tk называется k-м кортежем, n – размерность кортежа.

Понятию k-го кортежа соответствует множество значений, стоящих в k-й строке рассматриваемой таблицы.

Понятию отношения r соответствует множество значений, стоящих во всех строках рассматриваемой таблицы.

Ключом отношения r со схемой R называется минимальное подмножество

K = {Ai1, Ai2,…, Aim}⊆{A1, A2, …, An}, где {i1, i2, …,im}⊆{1, 2, …, n}, такое, что любые два различных кортежа t1, t2 ∈r (t1 ≠ t2) не совпадают по значениям множества K ={Ai1, Ai2, …, Aim}.

Возможны случаи, когда отношение r имеет несколько ключей. Такие ключи называются потенциальными (возможными). Выбранный из них ключ для идентификации кортежей называется первичным ключом. Таким образом, достаточно знать значение кортежа на множестве K, чтобы однозначно его идентифицировать. Ключ используется для представления связей между отношениями. С этой целью первичный ключ одного отношения включается в структуру (набор атрибутов) связанного с ним отношения. Для второго отношения соответствующий ключ называется внешним ключом.

Совокупность схем отношений, используемых для представления концептуальной модели, называется схемой реляционной базы данных (реляционной моделью данных).

Текущие значения соответствующих отношений называются реляционной базой данных.

Выпишем реляционную модель данных примера из предыдущей лекции (см. рис. 4).

Рис. 4 Пример сетевой модели концептуального представления

Введем обозначения атрибутов всех соответствующих сущностей. Пусть A1 – код студента, A2 – фамилия, A3 – дата рождения, A4 – место рождения, A5 – номер факультета, A6 – название факультета, A7 – номер специальности, A8 – название специальности. Обозначим схему отношения СТУДЕНТ как R1, ФАКУЛЬТЕТ как R2, СПЕЦИАЛЬНОСТЬ как R3, СТУДЕНТ УЧИТСЯ НА ФАКУЛЬТЕТЕ как R4, СТУДЕНТ УЧИТСЯ ПО СПЕЦИАЛЬНОСТИ как R5, НА ФАКУЛЬТЕТЕ ИМЕЮТСЯ СПЕЦИАЛЬНОСТИ как R6.

Тогда реляционная модель соответствующего примера описывается следующей совокупностью схем отношений:

R1(A1, A2, A3, A4)

R2(A5, A6)

R3(A7, A8)

R4(A1, A5)

R5(A1, A7)

R6(A5, A7)

Напомним, что понятие «схема отношения» соответствует описанию структуры таблицы. Таблица с заполненными значениями (заполненными строками) соответствует понятие «отношение». Для данного примера отношения, соответствующие вышеуказанным схемам отношений будем обозначать r1, r2, r3, r4, r5, r6,

Отметим следующие свойства отношения:

1. Отношение имеет имя, которое отличается от имен всех других отношений.

2. Каждое значение элементов кортежей представляется простым (атомарным) типом данных.

3. Каждый атрибут имеет уникальное имя.

4. Значения всех атрибутов являются атомарными (неделимыми). Это следует из определения домена как множества значений простого типа данных, т.е. среди значений домена не могут содержаться множества.

5. Порядок рассмотрения атрибутов в схеме отношения (отношении) не имеет значения, т.к. для ссылки на значение атрибута в кортеже отношения всегда используется имя атрибута.

6. Порядок рассмотрения кортежей в отношении не имеет значения, т.к. отношение представляет собой множество кортежей, а элементы множества, по определению теории множеств, неупорядочены.







Date: 2015-11-15; view: 933; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.012 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию