Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Постановка зaдaчи линейного программирования
В последние годы мы особенно отчетливо ощутили, что нет ничего важнее для общества, чем здоровая экономика Научное исследование основ функционирования экономики - сложная и интересная деятельность. Математические методы в ней играют возрастающую с каждым десятилетием роль, а реализация возникающих при этом математических моделей и получение практически важных результатов невозможны без ЭВМ. В данном параграфе рассматривается лишь один из разделов - оптимальное планирование - и внутри него одна из моделей, так называемое, линейное программирование. Это связано с относительной простотой и ясностью как содержательной постановки соответствующих задач, так и методов решения. О таких интересных, но более сложных проблемах, как выпуклое программирование, динамическое программирование, теория игр мы лишь упомянем, отсылая читателей за подробностями к специальной литературе. Отметим еще, что термин «программирование» в названии этих разделов теории оптимального планирования весьма условен, связан с историческими обстоятельствами и к программированию в общепринятом сейчас смысле прямого отношения не имеет. Общеизвестно, сколь важно для решения экономических задач планирование -как при рыночной, так и при плановой экономике. Обычно для решения экономической проблемы существует много способов (стратегий), отнюдь не равноценных по затратам финансов, людских ресурсов, времени исполнения, а также по достигаемым результатам. Наилучший из способов (по отношению к выбранному критерию - одному или нескольким) называют оптимальным. Приведем простейший пример такого рода задач. Пример 1. На некотором предприятии могут выпускать изделия двух видов (например, мотоциклы и велосипеды). В силу ограниченности возможностей сборочного цеха в нем могут собирать за день либо 25 мотоциклов (если не собирать вообще велосипеды), либо 100 велосипедов (если не собирать вообще мотоциклы), либо какую-нибудь комбинацию тех и других, определяемою приемлемыми трудозатратами. Склад может принять не более 70 изделий любого вида в сутки. Известно, что мотоцикл стоит в 2 раза дороже велосипеда. Требуется найти такой план выпуска продукции, который обеспечил бы предприятию наибольшею выручку. Такого рода задачи возникают повседневно в огромном количестве, но в реальности число изделий гораздо больше двух, да и дополнительных условий тоже больше. Решить подобную задачу путем перебора всех мыслимых вариантов часто невозможно даже на ЭВМ. В нашем примере, однако, в ЭВМ нет необходимости -задача решается очень легко. Обозначим число выпускаемых за день мотоциклов х, велосипедов - у. Пусть τ1 -время (в часах), уходящее на производство одного мотоцикла, а τ2 - одного велосипеда. Из условия задачи следует, что τ1 = 4 τ2. Если завод работает круглосуточно, то, очевидно, при одновременном выпуске обоих изделий
Но 4 x + y ≤ 100 . Еще одно условие - ограниченная емкость склада:
x + y ≤ 70 Обозначим цену мотоцикла а1 (руб.), цену велосипеда – а2 (руб.). По условию а1 = 2 a2. Общая цена дневной продукции
S = а1 ∙ х + a2 ∙ у = 2 a2 ∙ х + а2 ∙ у = а2 ∙ ( 2 х + у).
Поскольку a2 - заданная положительная константа, то наибольшего значения следует добиваться отвеличины f = 2х + у. Итак, учитывая все условия задачи, приходим к ее математической модели: среди неотрицательных целочисленных решений системы линейных неравенств
найти такое, которое соответствует максимуму линейной функции
Проще всего решить эту задачу чисто геометрически. Построим на плоскости (х, у) область, соответствующую неравенствам (7.71) и условию неотрицательности x и у. Эта область выделена на рис. 7.62 жирной линией. Всякая ее точка удовлетворяет неравенствам (7.71) и неотрицательности переменных. Пунктирные линии на рисунке - семейство прямых, удовлетворяющих уравнению f = 2х + у = с (с разными значениями константы с). Вполне очевидно, что наибольшему возможному значению f, совместному с предыдущими условиями, соответствует жирная пунктирная линия, соприкасающаяся с областью М в точке Р.
Рис. 7.62. Графическое решение задачи об оптимальном плане производства (к примеру 1)
Этой линии соответствует значение f = 80. Пунктирная линия правее хоть и соответствует большему значению f, но не имеет общих точек с М, левее - меньшим значениям f. Координаты точки Р (10, 60) - искомый оптимальный план производства. Отметим, что нам «повезло» - решение (х, у) оказалось целочисленным. Если бы прямые
4x + y = 100 х + у = 70 пересеклись в точке с нецелочисленными координатами, мы бы столкнулись со значительными проблемами. Еще больше их было бы, если бы наш завод выпускал три и более видов продукции. Прежде чем обсуждать возникающие при этом математические проблемы, дадим формулировки нескольких классических задач линейного программирования в общем виде. Пример 2. Транспортная задача. Некий продукт (например, сталь) вырабатывается на т заводах P1, P2,..., Рm, причем ежемесячная выработка составляетдь а1, a2, …, аm тонн, соответственно. Пусть эту сталь надо доставить на предприятия Q1, Q2,..., Qk (всего k), причем b1, b2,..., bk - ежемесячная потребность этих предприятий. Наконец, пусть задана стоимость cij перевозки одной тонны стали с завода Рi на предприятие Qj,. Естественно считать, что общее производство стали равно суммарной потребности вней: a1 + a2 +…+am = b1 + b2 +…+bk (7.73)
Необходимо составить план перевозок, при котором 1) была бы точно удовлетворена потребность в стали предприятий Q1, Q2,..., Qk, 2) была бы вывезена вся сталь с заводов Р1, Р2,....,Pm; 3) общая стоимость перевозок была бы наименьшей. Обозначим через xij количество стали (в тоннах), предназначенной к отправке с завода Рi на предприятие Qj. План перевозок состоит из (m∙k) неотрицательных чисел xij (i= 1, 2,..., m;j = 1,2,..., k). Таблица 7.10 Date: 2015-11-13; view: 517; Нарушение авторских прав |