Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Относительность расстояний ⇐ ПредыдущаяСтр 4 из 4
Пусть твердый стержень покоится в системе отсчета K', движущейся со скоростью υ относительно системы отсчета K (рис. 4.3.1). Стержень ориентирован параллельно оси x'. Его длина, измеренная с помощью эталонной линейки в системе K', равна l0. Ее называют собственной длиной. Какой будет длина этого стержня, измеренная наблюдателем в системе K? Для ответа на этот вопрос необходимо дать определение процедуры измерения длины движущегося стержня. Под длиной l стержня в системе K, относительно которой стержень движется, понимают расстояние между координатами концов стержня, зафиксированными одновременно по часам этой системы. Если известна скорость системы K' относительно K, то измерение длины движущегося стержня можно свести к измерению времени: длина l движущегося со скоростью υ стержня равна произведению υτ0, где τ0 – интервал времени по часам в системе K между прохождением начала стержня и его конца мимо какой-нибудь неподвижной точки (например, точки A) в системе K (рис. 4.3.1). Поскольку в системе K оба события (прохождение начала и конца стержня мимо фиксированной точки A) происходят в одной точке, то промежуток времени τ0 в системе K является собственным временем. Итак, длина l движущегося стержня равна l = υτ0.
Найдем теперь связь между l и l0. С точки зрения наблюдателя в системе K', точка A, принадлежащая системе K, движется вдоль неподвижного стержня налево со скоростью υ, поэтому можно записать
где τ есть промежуток времени между моментами прохождения точки A мимо концов стержня, измеренный по синхронизованным часам в K'. Используя связь между промежутками времени τ и τ0 , найдем Таким образом, длина стержня зависит от системы отсчета, в которой она измеряется, т. е. является относительной величиной. Длина стержня оказывается наибольшей в той системе отсчета, в которой стержень покоится. Движущиеся относительно наблюдателя тела сокращаются в направлении своего движения. Этот релятивистский эффект носит название лоренцева сокращения длины. Расстояние не является абсолютной величиной, оно зависит от скорости движения тела относительно данной системы отсчета. Сокращение длины не связанно с какими-либо процессами, происходящими в самих телах. Лоренцево сокращение характеризует изменение размера движущегося тела в направлении его движения. Если стержень на рис. 4.3.1 расположить перпендикулярно оси x, вдоль которой движется система K', то длина стержня оказывается одинаковой для наблюдателей в обеих системах K и K'. Это утверждение находится в соответствии с постулатом о равноправии всех инерциальных систем. Для доказательства можно рассмотреть следующий мысленный эксперимент. Расположим в системах K и K' вдоль осей y и y' два жестких стержня. Стержни имеют одинаковые собственные длины l, измеренные неподвижными по отношению к каждому из стержней наблюдателями в K и K', и один из концов каждого стержня совпадает с началом координат O или O'. В некоторый момент стержни оказываются рядом и представляется возможность сравнить их непосредственно: конец каждого стержня может сделать метку на другом стержне. Если бы эти метки не совпали с концами стержней, то один из них оказался бы длиннее другого с точки зрения обеих систем отсчета. Это противоречило бы принципу относительности. Неизменность длины движущегося стержня, ориентированного перпендикулярно направлению движения, была использована в § 4.2 при анализе релятивистского замедления времени. Следует обратить внимание, что при малых скоростях движения (υ << c) формулы СТО переходят в классические соотношения: l ≈ l0 и τ ≈ τ0. Таким образом, классические представления, лежащие в основе механики Ньютона и сформировавшиеся на основе многовекового опыта наблюдения над медленными движениями, в специальной теории относительности соответствуют предельному переходу при β = υ / c → 0. В этом проявляется принцип соответствия. Date: 2015-12-10; view: 302; Нарушение авторских прав |