Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Представление в компьютере вещественных чисел
Вещественными числами (в отличие от целых) в компьютерной технике называются числа, имеющие дробную часть. При их написании вместо запятой принято писать точку. Так, например, число 5 — целое, а числа 5.1 и 5.0 — вещественные. Для удобства отображения чисел, принимающих значения из достаточно широкого диапазона (то есть, как очень маленьких, так и очень больших), используется форма записи чисел с порядком основания системы счисления. Например, десятичное число 1.25 можно в этой форме представить так: 1.25*100 = 0.125*101 = 0.0125*102 =..., или так: 12.5*10–1 = 125.0*10–2 = 1250.0*10–3 =.... Любое число N в системе счисления с основанием q можно записать в виде N = M * qp, где M называется мантиссой числа, а p — порядком. Такой способ записи чисел называется представлением с плавающей точкой. Если “плавающая” точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине. Мантисса должна быть правильной дробью, первая цифра которой отлична от нуля: M из [0.1, 1). Такое, наиболее выгодное для компьютера, представление вещественных чисел называется нормализованным. Мантиссу и порядок q-ичного числа принято записывать в системе с основанием q, а само основание — в десятичной системе. Пример. Десятичная система Двоичная система 753.15 = 0.75315*103; -101.01 = -0.10101*211 (порядок 112 = 310) -0.000034 = -0.34*10-4; -0.000011 = 0.11*2-100 (порядок -1002 = -410) Вещественные числа в компьютерах различных типов записываются по-разному. При этом компьютер обычно предоставляет программисту возможность выбора из нескольких числовых форматов наиболее подходящего для конкретной задачи — с использованием четырех, шести, восьми или десяти байтов. В качестве примера приведем характеристики форматов вещественных чисел, используемых IBM-совместимыми персональными компьютерами:
Из этой таблицы видно, что форма представления чисел с плавающей точкой позволяет записывать числа с высокой точностью и из весьма широкого диапазона. При хранении числа с плавающей точкой отводятся разряды для мантиссы, порядка, знака числа и знака порядка: Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа. Чем больше разрядов занимает порядок, тем шире диапазон от наименьшего отличного от нуля числа до наибольшего числа, представимого в машине при заданном формате. Покажем на примерах, как записываются некоторые числа в нормализованном виде в четырехбайтовом формате с семью разрядами для записи порядка. 1. Число 6.2510 = 110.012 = 0,11001•211: 2. Число –0.12510 = –0.0012 = –0.1*2–10 (отрицательный порядок записан в дополнительном коде): Выполнение в ПК арифметических действий над нормализованными числами К началу выполнения арифметического действия операнды операции помещаются в соответствующие регистры АЛУ. Date: 2015-10-19; view: 572; Нарушение авторских прав |