Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Компьютерная система счисления
Система счисления — это способ записи чисел с помощью заданного набора специальных знаков (цифр). Существуют позиционные и непозиционные системы счисления. В непозиционных системах вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти. Алфавит системы: I, V, X, L, C, D, M. Изменение весовых значений цифр алфавита определяется циклической последовательностью: умножить на 5, а затем удвоить, тогда таблица весовых значений имеет вид:
Число 672 можно представить в римском изображении: 600+70+2=DCLXXII. Возможна запись любых положительных чисел в диапазоне от 1 до 3999. Для изображения чисел больших по весу используется над- или подстрочный индекс. Например,: 5325=VMCCCXXV=VMCCCXXV. Достоинства непозиционных систем: - использование в качестве цифр букв основной для римлян разговорной системы; - возможность выделения некоторой информации в ряду другой нетрадиционной. Недостатки: - громоздкость записи; - непонятность выполнения правил действий над числами, даже простейших арифметических. Исходя из изложенного, римская, как и другие непозиционные системы, используется редко, в основном для обозначения веков, знаменательных дат.
В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы. Сама же запись числа 757,7 означает сокращенную запись выражения: 700 + 50 + 7 + 0,7 = 7•102 + 5•101 + 7•100 + 7•10-1 = 757,7. Любая позиционная система счисления характеризуется своим основанием. Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе. В качестве основания системы счисления можно использовать любое значение Р в диапазоне: . Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т. д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения an-1 qn-1 + an-2 qn-2+... + a1 q1 + a0 q0 + a-1 q-1 +... + a-m q-m, где ai – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно. Например: Разряды 3 2 1 0 -1 Число 1 0 1 1, 12 = 1∙23+0∙22+1∙21+1∙20+1∙2-1 = 10,510
Разряды 2 1 0 -1 -2 Число 2 7 6, 5 48 = 2∙82+7∙81+6∙80+5∙8-1+ 4∙8-2 = 190,687510 В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т. д. Промежуточная – это система счисления, основание которой кратно 2 в целой положительной степени (n). Следовательно, основания любой промежуточной системы вычисляются зависимостью: Р=2n, т.е. Р=4, Р=8, Р=16, Р=32 и т.д. В настоящее время широко используются 2 промежуточные системы: восьмеричная (Р=8) и шестнадцатиричная (Р=16). Продвижением цифры называют замену её следующей по величине. Продвинуть цифру 1, значит, заменить её на 2, продвинуть цифру 2, значит, заменить её на 3 и т. д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0. Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё. Применяя это правило, можно записать первые десять целых чисел в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001; в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100; в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14; восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11. в десятичной системе 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. В шестнадцатеричной системе первые 36 числел:0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21, 2216. Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной системой счисления. В Китае, например, долгое время пользовались пятеричной системой счисления. Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления. Компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами: • для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т. п.), а не, например, с десятью, — как в десятичной; • представление информации посредством только двух состояний надежно и помехоустойчиво; • возможно применение аппарата булевой алгебры для выполнения логических преобразований информации; • двоичная арифметика намного проще десятичной. Недостаток двоичной системы - быстрый рост числа разрядов, необходимых для записи чисел. Двоичная система, удобная для компьютеров, но для человека же наоборот неудобна из-за ее громоздкости и непривычной записи. Полезно запомнить запись в различных системах счисления первых семнадцати целых чисел:
Date: 2015-10-19; view: 389; Нарушение авторских прав |