Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Молекулярная физиология фоторецепции. Рассмотрим последовательность изменений молекул в наружном сегменте палочки, ответственных за ее возбуждение (рис





Рассмотрим последовательность изменений молекул в наружном сегменте палочки, ответственных за ее возбуждение (рис. 14.7, А).

«Темновое» состояние

«Темновое» состояние фоторецепторов характеризуется наличием деполяризующих («темновых») токов. Наличие цГМФ внутри клетки в значительных концентрациях обуславливает открытое состояние каналов Na+ и Са2+. цГМФ синтезируется из ГТФ с помощью фермента гуанилатциклазы (ГЦ). Активацию этого фермента вызывает падение концентрации в цитоплазме свободного кальция.

Градиенты концентрации Na+ и К+ поддерживаются на плазматической мембране палочки активной работой натрий-калиевого насоса, локализованного в мембране внутреннего сегмента.

Фоторецепция

При поглощении кванта света молекулой зрительного пигмента (родопсина) в ней происходит мгновенная изомеризация ее хромофорной группы:

11-цuc-ретиналь[38] выпрямляется и превращается в полностью- транс-ретиналь [39].

Эта реакция длится около 1 пс (1-12 с). Свет выполняет роль спускового, или триггерного, фактора[40], запускающего механизм фоторецепции.

Вслед за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части молекулы: она обесцвечивается и переходит в состояние метародопсина II. В результате этого молекула зрительного пигмента приобретает способность к взаимодействию с другим белком — примембранным гуанозинтрифосфат-связывающим белком трансдуцином[41] (Т).

В комплексе с метародопсином II трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте гуанозиндифосфат (ГДФ) на гуанозинтрифосфат (ГТФ).

Метародопсин II способен активировать около 500—1000 молекул трансдуцина, что приводит к усилению светового сигнала.

Каждая активированная молекула трансдуцина, связанная с молекулой ГТФ, активирует одну молекулу другого примембранного белка — фермента фосфодиэстеразы (ФДЭ). Активированная ФДЭ с высокой скоростью разрушает молекулы циклического гуанозинмонофосфата (цГМФ). Каждая активированная молекула ФДЭ разрушает несколько тысяч молекул цГМФ — это еще один этап усиления сигнала в механизме фоторецепции. Результатом всех описанных событий, вызванных поглощением кванта света, становится падение концентрации свободного цГМФ в цитоплазме наружного сегмента рецептора. Это в свою очередь приводит к закрытию ионных каналов в плазматической мембране наружного сегмента, которые были открыты в темноте и через которые внутрь клетки входили Na+ и Са2+. Ионный канал закрывается вследствие того, что из-за падения концентрации свободного цГМФ в клетке от канала отходят молекулы цГМФ, которые были связаны с ним в темноте и держали его открытым.

Уменьшение или прекращение входа внутрь наружного сегмента Na+ приводит к гиперполяризации клеточной мембраны, т.е. возникновению на ней рецепторного потенциала. На рис. 14.7, Б показаны направления ионных токов, текущих через плазматическую мембрану фоторецептора в темноте.

Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клетки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора (глутамата). Таким образом, фоторецепторный процесс завершается уменьшением скорости выделения нейромедиатора из пресинаптического окончания фоторецептора.

Не менее сложен и совершенен механизм восстановления исходного темнового состояния фоторецептора, т.е. его способности ответить на следующий световой стимул. Для этого необходимо вновь открыть ионные каналы в плазматической мембране. Открытое состояние канала обеспечивается его связью с молекулами цГМФ, что в свою очередь непосредственно обусловлено повышением концентрации свободного цГМФ в цитоплазме. Это повышение концентрации обеспечивается утратой метародопсином II способности взаимодействовать с трансдуцином и активацией фермента гуанилатциклазы (ГЦ), способного синтезировать цГМФ из ГТФ. Активацию этого фермента вызывает падение концентрации в цитоплазме свободного кальция из-за закрытия ионного канала мембраны и постоянной работы белка-обменника, выбрасывающего кальций из клетки.

 

Нейроны сетчатки. Фоторецепторы сетчатки синаптически связаны с биполярными нейронами (см. рис. 14.6, Б). При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный нейрон, так и от него на ганглиозную клетку происходит безымпульсным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зрительный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецептивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карликовой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, но резко уменьшает световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные клетки) и между биполярными и ганглиозными клетками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.

Кроме афферентных волокон, в зрительном нерве есть и центробежные, или эфферентные, нервные волокна, приносящие к сетчатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчатки, регулируя проведение возбуждения между ними.

 

Нервные пути и связи в зрительной системе [42]. Из сетчатки зрительная информация по волокнам зрительного нерва (II пара черепных нервов) устремляется в мозг.

 

Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма[43]). Здесь часть волокон каждого зрительного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие — от левых половин сетчаток.

После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых структур, но основное число волокон приходит в таламический подкорковый зрительный центр — латеральное, или наружное, коленчатое тело (НКТ)[44]. Отсюда сигналы поступают в первичную проекционную область зрительной зоны коры (стриарная кора, или поле 17 по Бродману[45]). Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохраняет ее топологию, или ретинотопию (сигналы от соседних участков сетчатки попадают в соседние участки коры).

Электрическая активность центров зрительной системы. Электрические явления в сетчатке и зрительном нерве [46]. При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя.

Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ)[47]. Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой — на коже лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько характерных волн (рис. 14.8). Волна а отражает возбуждение внутренних сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате активации глиальных (мюллеровских) клеток[48] сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновык нейронов. Волна с отражает активацию клеток пигментного эпителия, а волна d горизонтальных клеток.

На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устремляются импульсы.

 

Рис. 14.8. Электроретинограмма (по Граниту). Объяснение в тексте.

Рис. 14.9, Импульсация двух ганглиозных клеток сетчатки (А и Б) и их концентрические рецептивные поля (РП).

Тормозные зоны рецептивных полей заштрихованы. Показаны реакции на включение (1 и 4) и выключение (2 и 3) света при стимуляции световым пятном центра РП (1 и 3) и его периферии (2 и 4).

 

Ганглиозная клетка сетчатки — это первый нейрон «классического» типа в цепи фоторецептор — мозг. Описано три основных типа ганглиозных клеток: отвечающие на включение (оп-реакция), на выключение (off-реакция) света и на то и другое (on‑off-реакция) (рис. 14.9).

Диаметр рецептивных полей ганглиоэных клеток в центре сетчатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация).

Одновременное возбуждение близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В основе этого эффекта лежит латеральное, или боковое, торможение. Рецептивные поля соседних ганглиозных клеток частично перекрываются, так что одни и те же рецепторы могут участвовать в генерации ответов нескольких нейронов. Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбужденных нейронов.

Электрические явления в подкорковом зрительном центре и зрительной зоны коры [49]. Картина возбуждения в нейронных слоях подкоркового зрительного центра — наружного или латерального, коленчатого тела (НКТ), куда приходят волокна зрительного нерва, во многом сходна с той, которая наблюдается в сетчатке. Рецептивные поля этих нейронов также круглые, но меньшего размера, чем в сетчатке. Ответы нейронов, генерируемые в ответ на вспышку света, здесь короче, чем в сетчатке. На уровне наружных коленчатых тел происходит взаимодействие афферентных сигналов, пришедших из сетчатки, с эфферентными сигналами из зрительной области коры, а также через ретикулярную формацию от слуховой и других сенсорных систем. Эти взаимодействия обеспечивают выделение наиболее существенных компонентов сенсорного сигнала и процессы избирательного зрительного внимания.

Импульсные разряды нейронов наружного коленчатого тела по их аксонам поступают в затылочную часть полушарий большого мозга, где расположена первичная проекционная область зрительной зоны коры (стриарная кора, или поле 17). Здесь происходит значительно более специализированная и сложная, чем в сетчатке и в наружных коленчатых телах, переработка информации. Нейроны зрительной зоны коры имеют не круглые, а вытянутые (по горизонтали, вертикали или в одном из косых направлений) рецептивные поля небольшого размера. Благодаря этому они способны выделять из цельного изображения отдельные фрагменты линий с той или иной ориентацией и расположением (детекторы ориентации) и избирательно на них реагировать.

 

 

Рис. 14.10. Вызванные потенциалы (ВП) разных уровней зрительной системы кошки.

С—сетчатки (ЭРГ); ОТ—зрительного тракта; НКТ — наружного коленчатого, или латерального, тела; ЗК — первичной проекционной области зрительной зоны коры. Стрелкой обозначено включение светового стимула.

 

((остановка продолжить

В каждом небольшом участке зрительной зоны коры по ее глубине сконцентрированы нейроны с одинаковой ориентацией и локализацией рецептивных полей в поле зрения. Они образуют колонку нейронов, проходящую вертикально через все слои коры. Колонка — пример функционального объединения корковых нейронов, осуществляющих сходную функцию. Как показывают результаты исследований последних лет, функциональное объединение отдаленных друг от друга нейронов зрительной зоны коры может происходить также за счет синхронности их разрядов. Многие нейроны зрительной зоны коры избирательно реагируют на определенные направления движения (дирекциональные детекторы) либо на какой-то цвет, а часть нейронов лучше всего отвечает на относительную удаленность объекта от глаз. Информация о разных признаках зрительных объектов (форма, цвет, движение) обрабатывается параллельно в разных частях зрительной зоны коры большого мозга.

Для оценки передачи сигналов на разных уровнях зрительной системы часто используют регистрацию суммарных вызванных

Twr*»Miiwairrm /ВГП_ irnwr\nLJ* v wr^un^THbfX МОЖНО ОДНОВрСМСННО ОТВОДИТЬ от всех отделов, а у человека — от зрительной зоны коры с помощью наложенных на кожу головы электродов (рис. 14.10).

Сравнение вызванного световой вспышкой ответа сетчатки (ЭРГ) и ВП коры большого мозга позволяет установить локализацию патологического процесса в зрительной системе человека.

Зрительные функции. Световая чувствительность. Абсолютная чувствительность зрения. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел некоторую минимальную (пороговую) энергию. Минимальное число квантов света, необходимое для возникновения ощущения света, в условиях темновой адаптации колеблется от 8 до 47. Рассчитано, что одна палочка может быть возбуждена всего 1 квантом света. Таким образом, чувствительность рецепторов сетчатки в наиболее благоприятных условиях световосприятия физически предельна. Одиночные палочки и колбочки сетчатки различаются по световой чувствительности незначительно, однако число фоторецепторов, посылающих сигналы на одну ганглиозную клетку, в центре и на периферии сетчатки различно. Число колбочек в рецептивном поле в центре сетчатки примерно в 100 раз меньше числа палочек в рецептивном поле на периферии сетчатки. Соответственно и чувствительность палочковой системы в 100 раз выше, чем колбочковой.

Зрительная адаптация. При переходе от темноты к свету наступает временное ослепление, а затем чувствительность глаза постепенно снижается. Это приспособление зрительной сенсорной системы к условиям яркой освещенности называется световой адаптацией. Обратное явление (темновая адаптация) наблюдается при переходе из светлого помещения в почти не освещенное. В первое время человек почти ничего не видит из-за пониженной возбудимости фоторецепторов и зрительных нейронов. Постепенно начинают выявляться контуры предметов, а затем различаются и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается.

Повышение световой чувствительности во время пребывания в темноте происходит неравномерно: в первые 10 мин она увеличивается в десятки раз, а затем в течение часа — в десятки тысяч раз. Важную роль в этом процессе играет восстановление зрительных пигментов. Пигменты колбочек в темноте восстанавливаются быстрее родопсина палочек, поэтому в первые минуты пребывания в "темноте адаптация обусловлена процессами в колбочках. Этот первый период адаптации не приводит к большим изменениям чувствительности глаза, так как абсолютная чувствительность колбочкового аппарата невелика.

Следующий период адаптации обусловлен восстановлением родопсина палочек. Этот период завершается только к концу первого часа пребывания в темноте. Восстановление родопсина сопровождается резким (в 100 000—200 000 раз) повышением чувствительности палочек к свету. В связи с максимальной чувствительностью в темноте только палочек слабо освещенный предмет виден лишь периферическим зрением.

Существенную роль в адаптации, помимо зрительных пигментов, играет изменение (переключение) связей между элементами сетчатки. В темноте площадь возбудительного центра рецептивного поля ганглиозной клетки увеличивается вследствие ослабления или снятия горизонтального торможения. При этом увеличивается конвергенция фоторецепторов на биполярные нейроны и биполярных нейронов на ганглиозную клетку. Вследствие этого за счет пространственной суммации на периферии сетчатки световая чувствительность в темноте возрастает.

S—1601 225

Световая чувствительность глаза зависит и от влияний ЦНС. Раздражение некоторых участков ретикулярной формации ствола мозга повышает частоту импульсов в волокнах зрительного нерва. Влияние ЦНС на адаптацию сетчатки к свету проявляется и в том, что освещение одного глаза понижает световую чувствительность неосвещенного глаза. На чувствительность к свету оказывают влияние также звуковые, обонятельные и вкусовые сигналы.

Дифференциальная зрительная чувствительность. Если на освещенную поверхность, яркость которой /, подать добавочное освещение (dl), то, согласно закону Вебера, человек заметит разницу в освещенности только если dI/I^K, где К— константа, равная 0,01—0,015. Величину dl/1 называют дифференциальным порогом световой чувствительности. Отношение dl/1 при разных освещен-ностях постоянно и означает, что для восприятия разницы в освещенности двух поверхностей одна из них должна быть ярче другой на 1—1,5 %.

Яркостной контраст. Взаимное латеральное торможение зрительных нейронов лежит в основе общего, или глобального, ярко-стного контраста. Так, серая полоска бумаги, лежащая на светлом фоне, кажется темнее такой же полоски, лежащей на темном фоне. Причина в том, что светлый фон возбуждает множество нейронов сетчатки, а их возбуждение тормозит клетки, активированные полоской. Поэтому на ярко освещенном фоне серая полоска кажется более темной, чем на черном фоне. Наиболее сильно латеральное торможение действует между близко расположенными нейронами, осуществляя локальный контраст. Происходит кажущееся усиление перепада яркости на границе поверхностей разной освещенности. Этот эффект называют также подчеркиванием контуров: на границе яркого поля и темной поверхности можно видеть две дополнительные линии (еще более яркую линию на границе светлого поля и очень темную линию на границе темной поверхности).

Слепящая яркость света. Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза: чем дольше была темновая адаптация, тем меньшая яркость света вызывает ослепление. Если в поле зрения попадают очень яркие (слепящие) объекты, они

vvvninaiOT пячгтиирнн** гигняттпи r чняииТелЬНОЙ части ССТЧЯТКИ

(на ночной дороге водителей ослепляют фары встречных машин). При тонких зрительных работах (длительное чтение, сборка мелких деталей, работа хирурга) надо пользоваться только рассеянным светом, не ослепляющим глаза.

Инерция зрения, слитие мельканий и последовательные образы. Зрительное ощущение появляется не мгновенно. Прежде чем возникнет ощущение, в зрительной системе должны произойти многократные преобразования и передача сигналов. Время «инерции зрения», необходимое для возникновения зрительного ощущения, в среднем равно 0,03—0,1 с. Это ощущение исчезает также не сразу после того, как прекратилось раздражение, — оно держится еще некоторое время. Если в темноте водить по воздуху какой-либо яркой точкой (например, горящей спичкой), то мы увидим не движущуюся точку, а светящуюся линию. Быстро следующие одно за другим световые раздражения сливаются в одно непрерывное ощущение.

Минимальная частота следования световых стимулов (например, вспышек света), при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом свойстве зрения основаны кино и телевидение: мы не видим промежутков между отдельными кадрами ('/24 с в кино), так как зрительное ощущение от одного кадра еще длится до появления другого. Это и обеспечивает иллюзию непрерывности изображения и его движения.

Ощущения, продолжающиеся после прекращения раздражения, называются последовательными образами. Если посмотреть на включенную лампу и закрыть глаза, то она видна еще в течение некоторого времени. Если же после фиксации взгляда на освещенном предмете перевести взгляд на светлый фон, то некоторое время можно видеть негативное изображение этого предмета, т.е. светлые его части — темными, а темные — светлыми (отрицательный последовательный образ). Причина его в том, что возбуждение от освещенного объекта локально тормозит (адаптирует) определенные участки сетчатки; если после этого перевести взор на равномерно освещенный экран, то его свет сильнее возбудит те участки, которые не были возбуждены ранее.

Цветовое зрение. Весь видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны от 400 нм) излучением, которое мы называем фиолетовым цветом, и длинноволновым излучением (длина волны до 700 нм), называемым красным цветом. Остальные цвета видимого спектра (синий, зеленый, желтый, оранжевый) имеют промежуточные значения длины волны. Смешение лучей всех цветов дает белый цвет. Он может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, желтого и синего. Если произвести смешение трех основных цветов — красного, зеленого и синего, то могут быть получены любые цвета.


Date: 2015-10-18; view: 451; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию