Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
АРМ конструктора-проектировщика
Автоматизированное рабочее место (АРМ) — комплекс технических средств вычислительной техники, обеспечивающий эффективное взаимодействие пользователя (конструктора, проектировщика, научного работника и т. п.) с системой автоматизированного проектирования системами технологической подготовки эксперимента, управления экспериментом, автоматизации научных исследований и т. п. АРМ может быть терминалом электронно-вычислительных машин или автономным устройством, базирующимся на мини (микро)-ЭВМ. АРМ составляют периферийные устройства электронно-вычислительных машин (алфавитно-цифровой дисплей, графичекий дисплей, графопостроитель, диджитайзер). ориентированные на режим диалога и работу с графической информацией. АРМ имеет своё математическое обеспечение, включающее диалоговую операционную систему и пакет прикладных программ, состав которого зависит от назначения АРМ. Появление графических редакторов привело к переходу от кульманов к компьютеру. На первых порах такая работа практически копировала приемы работы с карандашом и ластиком. Чертеж (файл) получался чистым и без помарок. Использование современных компьютерных технологий позволяет существенно сократить длительность проектно-конструкторских работ, по новому реализовать проектные процедуры и в результате получить более эффективные технические решения. Новейшие компьютерные технологии позволяют организовать АРМ конструктора-проектировщика. В мире существует много компаний, занимающихся разработкой систем автоматизированного проектирования (САПР), но признанным мировым лидером в этой области является компания Autodesk с ее продуктом AutoCad. Autodesk предлагает программные решения для машиностроения, строительства, телекоммуникаций, видеопроизводства и индустрии развлечений. Выбор AutoCAD в качестве подобного программного инструмента основывается на трех главных факторах: 2 Цели автоматизации проектирования технологических процессов и средства их достижения. Проектирование технологических процессов (ТП) занимает центральное место в подготовке производства изделий. Технологические процессы содержат информацию о трудовых и материальных нормативах, без которых невозможно планирование и управление производственными ресурсами. В середине ХХ века наша страна занимала лидирующие позиции в области разработки методологии и методов автоматизации проектирования ТП. В эти годы были созданы концепции проектирования типовых и групповых технологических процессов, сформировано понятие конструкторско-технологических элементов детали (которые впоследствии получили на Западе наименование features), разработано множество различных САПР ТП. 3 Цели автоматизации проектирования технологических процессов и средства их достижения. Подробное описание дерева целей компьютеризации инженерной деятельности было приведено в декабрьском номере журнала за прошлый год. Основная цель создания САПР ТП заключается в экономии труда технологов. Для достижения этой цели необходимо располагать средствами автоматизации оформления технической документации, средствами информационной поддержки проектирования и автоматизации принятия решений. В своем историческом развитии САПР ТП постепенно расширяли арсенал своих средств. На первом этапе эти системы часто представляли собой специализированные текстовые редакторы, некоторые из которых были документоориентированными. С появлением баз данных появилась возможность поддерживать процесс ручного формирования ТП в таких редакторах в части поиска необходимых средств технологического оснащения. Однако подавляющее большинство САПР ТП, в том числе и ныне существующих, не способны поддерживать автоматизацию принятия решений в процессе проектирования на основе технологических знаний: алгоритмический и применяющий методы искусственного интеллекта.
31. Методы построений 3D – моделей. 3D модели создаются в CAD-системах (или в CAD/CAM-системах) имеющимися в них средствами геометрического моделирования. Модель хранится в системе как некоторое математическое описание и отображается на экране в виде пространственного объекта. Построение пространственной геометрической модели изделия является центральной задачей компьютерного проектирования. Именно эта модель используется для дальнейшего решения задач формирования чертежно-конструкторской документации, проектирования средств технологического оснащения, разработки управляющих программ для станков с ЧПУ. Кроме того, эта модель передается в системы инженерного анализа (САЕ-системы) и используется там для проведения инженерных расчетов. По компьютерной модели с помощью методов и средств быстрого прототипирования может быть получен физический образец изделия. 3D модель может быть не только построена средствами данной CAD-системы, но, в частном случае, принята из другой CAD-системы через один из согласованных интерфейсов, или сформирована по результатам обмера физического изделия-прототипа на координатно-измерительной машине (рис. 1.1). Способы представления моделей. Различают поверхностное (каркасно-поверхностное) и твердотельное моделирование. При поверхностном моделировании сначала строится каркас - пространственная конструкция, состоящая из отрезков прямых, дуг окружностей и сплайнов. Каркас играет вспомогательную роль и служит основой для последующего построения поверхностей, которые «натягиваются» на элементы каркаса. В зависимости от способа построения, различают следующие виды поверхностей: линейчатые; вращения; кинематические; галтельного сопряжения; проходящие через продольные и поперечные сечения; поверхности для «затягивания окон» между тремя и более смежными поверхностями; NURBS-поверхности, определяемые заданием контрольных точек продольных и поперечных сечений; планарные поверхности. Хотя поверхности и определяют границы тела, но самого понятия «тело» в режиме поверхностного моделирования не существует, даже если поверхности ограничивают замкнутый объем. Это наиболее важное отличие поверхностного моделирования от твердотельного. Другая особенность состоит в том, что элементы каркасно-поверхностной модели никак не связаны друг с другом. Изменение одного из элементов не влечет за собой автоматического изменения других. Это дает большую свободу при моделировании, но одновременно значительно усложняет работу с моделью. Твердотельное моделирование имеет в своей основе идеологию, которая существенно отличается от идеологии каркасно-поверхностного моделирования. Твердотельная модель представляет собой целостный объект, занимающий замкнутую часть пространства. Всегда можно точно сказать, находится ли точка внутри твердого тела, на его поверхности или вне тела. При изменении в модели любого элемента будут изменяться все другие элементы, которые связаны с ним. В результате изменится форма твердого тела, но сохранится его целостность. Элементами, из которых строится твердое тело, могут быть: элементы вытягивания (полученные вытягиванием плоского контура перпендикулярно его плоскости); элементы вращения (полученные вращением плоского контура вокруг заданной оси); фаски; скругления; оболочки; ребра жесткости и др. Твердотельный объект строится путем последовательного «добавления» или «вычитания» элементов. Так, если к уже имеющейся твердотельной модели «добавить» элемент вытягивания, то этот элемент образует на модели выступ, а при «вычитании» элемента на модели образуется углубление. Если при построениях доступны одновременно несколько твердотельных объектов, то над любыми двумя твердотельными объектами, пересекающимися в пространстве, можно выполнять булевы операции объединения, вычитания и пересечения. Твердотельное моделирование предполагает возможность установки параметрических зависимостей между элементами твердого тела или нескольких тел. При этом изменение одного из параметров (например, длины элемента) приводит к соответствующей перестройке всех параметрически связанных элементов. Такое моделирование, называемое параметрическим, дает конструктору дополнительные удобства. Так, можно установить параметрические зависимости между элементами твердотельной сборки и, тем самым, автоматизировать контроль собираемости изделия.
Date: 2015-09-24; view: 3963; Нарушение авторских прав |