Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Медиаторы





Передача информации в синапсах осуществляется с помощью молекул специальных химических веществ — медиаторов, т.е. по­средников передачи, образуемых в терминали и выводимых через пресинаптическую мембрану в синаптическую щель.

Синтезированный медиатор накапливается в пресинаптическом окончании в синаптических пузырьках около синаптической щели. Выведение медиатора в синаптическую щель происходит не отдель­ными молекулами, а пропорциями или квантами, состоящими из примерно одинакового числа молекул (порядка нескольких тысяч). Этот процесс происходит путем экзоцитоза, т.е. перемещения пу­зырька к пресинаптической мембране, слияния с ней, открытия в щель и изливания медиатора. Медиатор освобождается в синапти­ческую щель постоянно: в отсутствии импульсов возбуждения — редкими единичными порциями, под влиянием пришедшего возбуж­дения — большим числом квантов. Определяющую роль в процессе освобождения медиатора играют ионы Са, поступающие в пресинаптическое окончание через кальциевые каналы в его мембране. В состоянии покоя число открытых Са- каналов крайне невелико, соответственно и кальция поступает мало, и порций медиатора выделяется мало.

Под влиянием поступающих по нервному волокну импульсов про­исходит деполяризация пресинаптической мембраны, активируется значительное число Са-каналов и выбрасывается большое число порций медиатора. Значение Са для процесса экзоцитоза и осво­бождения медиатора окончательно не выяснено. Предполагается, что в этом процессе принимает участие специальный модулируемый кальцием белок с высоким сродством и избирательностью к каль­цию. Поступивший в пресинаптическое окончание кальций частично связывается в нем со специальными депонирующими структурами, например, митохондриями, а частично удаляется обратно в синап­тическую щель после завершения возбуждения с помощью Сана­соса, расходующего энергию АТФ, и мембранного механизма, обме­нивающего Са++ на 2Na+

Выделившиеся через пресинаптическую мембрану кванты меди­атора диффундируют через синаптическую щель к постсинаптической мембране, где связываются со специальными химическими кле­точными рецепторами, специфическими для молекул медиатора. Образовавшийся на постсинаптической мембране комплекс «меди­атор-рецептор» активирует хемочувствительные мембранные каналы, что повышает проницаемость мембраны для ионов и меняет ее потенциал покоя. В отсутствии импульсов возбуждения эти кратко­временные сдвиги проницаемости формируют очень маленькие по амплитуде пики, получившие название миниатюрные постсинаптические потенциалы, возникающие с непостоянным интервалом вре­мени (в среднем около 1с), но всегда одинаковой амплитуды. Сле­довательно, миниатюрные потенциалы являются результатом спон­танного, случайного освобождения единичных квантов медиатора. При поступлении к пресиналтической мембране нервного импульса, число квант освобождающегося медиатора резко возрастает, одномоментно формируется множество «медиатор- рецепторных» комплек­сов, участвующих в генерации постсинаптического потенциала.

Передача информации через синапсы осуществляется значительно медленнее, чем по нервам или через тесные контакты, поскольку для процессов выведения медиатора, диффузии через синаптическую щель, связывания с рецепторами постсинаптической мембраны, ак­тивации ее хемочувствительных каналов требуется больше времени, чем для сальтаторного или электротонического проведения.

Прекращение действия медиатора и соответствующее завершение передачи импульса возбуждения осуществляется за счет удаления медиатора из синаптической щели. Это происходит в результате двух процессов — обратного «захвата» медиатора пресинаптическим окон­чанием и разрушения медиатора специальными ферментами, нахо­дящимися у рецепторов постсинаптической мембраны. Кроме того, небольшие количества медиатора диффундируют из синапсов в микроокружение клетки.

Энергетическое и субстратно-ферментативное обеспечение синап­тической передачи сигналов осуществляется с помощью аксонного транспорта из тела клетки в пресинаптическое окончание белков и ферментов, органелл, в частности митохондрий, низкомолекулярных веществ и уже синтезированных медиаторных веществ. Транспорт происходит с помощью нейрофибрилл или микротрубочек, тянущих­ся внутри аксона по всей его длине. Аксонный транспорт требует обязательного участия ионов кальция, а энергия для его реализации черпается из непрерывно ресинтезируемой в аксоне АТФ. Помимо транспорта веществ по аксонам из нейрона к синаптическому окон­чанию, существует и ретроградный аксонный транспорт, обеспечи­вающий поступление от синапса в тело клетки веществ, регулиру­ющих в ней синтез белка.

В зависимости от природы медиатора и характера связывающих его рецепторов постсинаптическая мембрана может деполяризоваться, что характерно для возбуждения, или гиперполяризоваться, что типично для торможения.

Соответственно, синапсы, постсинаптическая мем­брана которых под влиянием медиатора деполяризуется, носят назва­ние возбуждающих, а синапсы, в которых медиатор вызывает гипер­поляризацию постсинаптической мембраны, называются тормозными.

Природа и механизм постсинаптических потенциалов

В возбуж­дающих синапсах нервной системы медиатором может являться ацетилхолин, норадреналин, дофамин, серотонин, глугаминовая кисло­та, вещество Р, а также большая группа других веществ, являющих­ся, если не медиаторами в прямом значении, то во всяком случае модуляторами (меняющими эффектиьность) синаптической передачи. Возбуждающие медиаторы вызывают появление на постсинаптичес­кой мембране возбуждающего постсинаптического потенциала (ВПСП). Его формирование обусловлено тем, что медиатор-рецепторный комплекс активирует Na- каналы мембраны (а также веро­ятно и Са-каналы) и вызывает за счет поступления натрия внутрь клетки деполяризацию мембраны. Одновременно происходит и уменьшение выхода из клетки ионов К+ Амплитуда одиночного ВПСП однако довольно мала, и для уменьшения заряда мембраны до критического уровня деполяризации необходима одновременная активация нескольких возбуждающих синапсов. ВПСП, образуемые на постсинаптической мембране этих синапсов, способны суммиро­ваться, т.е. усиливать друг друга, приводя к росту амплитуды ВПСП (пространственная суммация). Растет амплитуда ВПСП и при уве­личении частоты поступающих к синапсу нервных импульсов (вре­менная суммация), что повышает число выводимых в синаптическую щель квантов медиатора.

Процесс спонтанной регенеративной деполяризации возникает в нейроне обычно в месте отхождения от тела клетки аксона, в так называемом аксонном холмике, где аксон еше не покрыт миелином и порог возбуждения наиболее низкий. Таким образом, ВПСП, возникающие в разных участках мембраны нейрона и на его дендритах, распространяются к аксонному холмику, где суммируются, деполяризуя мембрану до критического уровня и приводя к появ­лению потенциала действия.

В тормозных синапсах обычно действуют другие, тормозные, ме­диаторы. Среди них хорошо изученными являются аминокислота глицин (тормозные синапсы спинного мозга), гамма-аминомасляная кислота (ГАМК) — тормозной медиатор в нейронах головного мозга. Вместе с тем, тормозной синапс может иметь тот же медиатор, что и возбуждающий, но иную природу рецепторов постсинаптической мембраны. Так, для ацетилхолина, биогенных аминов и аминокислот на постсинаптической мембране разных синапсов могут существо­вать как минимум два типа рецепторов, и, следовательно, разные медиатор-рецепторные комплексы способны вызывать различную реакцию хемочувствительных рецепторуправляемых каналов. Для тор­мозного эффекта такой реакцией может являться активация кали­евых каналов, что вызывает увеличение выхода ионов калия наружу и гиперполяризацию мембраны. Аналогичный эффект во многих тормозных синапсах имеет активация каналов для хлора, увеличи­вающая его транспорт внутрь клетки. Возникающий при гиперполя­ризации сдвиг мембранного потенциала получил название тормоз­ного постсинаптического потенциала (ТПСП). На рис.3.5 показаны отличительные черты ВПСП и ТПСП. Увеличение частоты нервных импульсов, приходящих к тормозному синапсу, также как и в воз­буждающих синапсах, вызывает нарастание числа квантов тормозно­го медиатора, выделяющихся в синаптическую щель, что, соответ­ственно, повышает амплитуду гиперполяризационного ТПСП. Вместе с тем, ТПСП не способен распространяться по мембране и суще­ствует только локально.

В результате ТПСП уровень мембранного потенциала удаляется от критического уровня деполяризации и возбуждение становится либо вообще невозможным, либо для возбуждения требуется суммация значительно больших по амплитуде ВПСП, т.е. наличие значительно больших возбуждающих токов. При одновременной активации воз-буждаюших и тормозных синапсов резко падает амплитуда ВПСП, так как деполяризующий поток ионов Na+ компенсируется одновре­менным выходом ионов К+ в одних видах тормозных синапсов или входом ионов СГ в других, что называют шунтированием ВПСП.

Свойства нервных центров

1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры, процесс возбуждения распро­страняется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям).

2. Иррадиация возбуждения. Особенности структурной органи­зации центральных нейронов, огромное число межнейронных со­единений в нервных центрах существенно модифицируют (изменя­ют) направление распространения процесса возбуждения в зависи­мости от силы раздражителя и функционального состояния центральных нейронов. Значительное увеличение силы раздражи­теля приводит к расширению области вовлекаемых в процесс воз­буждения центральных нейронов — иррадиации возбуждения.

3. Суммация возбуждения. В работе нервных центров значи­тельное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой яв­ляется постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

4. Наличие синаптической задержки. Время рефлекторной ре­акции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относи­тельно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка при­мерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, ста­новится понятной длительность большинства рефлекторных реак­ций — десятки миллисекунд.

Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомле­нием. Этот процесс связан с деятельностью синапсов — в последних наступает истощение запасов медиатора, уменьшаются энергетиче­ские ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6. Тонус. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра.

7. Пластичность. Функциональная возможность нервного центра существенно модифицировать картину осуществляемых рефлектор­ных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами.

8. Конвергенция. Нервные центры высших отделов мозга яв­ляются мощными коллекторами, собирающими разнородную аф­ферентную информацию. Количественное соотношение перифери­ческих рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают прямые исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения и т. д.). Конвергенция на клетках нервного центра разных аффе­рентных входов предопределяет важные интегративные, перераба­тывающие информацию функции центральных нейронов, т. е. вы­сокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги опре­деляет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.

9. Интеграция в нервных центрах. Важные интегративные фун­кции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функцио­нальных объединений отдельных нервных центров в целях осу­ществления сложных координированных приспособительных цело­стных реакций организма (сложные адаптивные поведенческие акты).

10. Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется та­кими свойствами, как повышенная возбудимость, стойкость и инер­тность возбуждения, способность к суммированию возбуждения.

В доминантном очаге устанавливается определенный уровень ста­ционарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данныхусловий ритм работы, когда этот очаг становится наиболее чувст­вительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги воз­буждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активиру­ющего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.

11. Цефализация нервной системы. Основная тенденция в эво­люционном развитии нервной системы проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головных отделах ЦНС. Этот процесс называется цефализацией управляющей функции нервной системы. При всей сложности складывающихся отношений между старыми, древними и эволюционно новыми нервными образованиями стволовой части мозга общая схема взаимных влияний может быть представлена следующим образом: восходящие влияния (от нижележащих «ста­рых» нервных структур к вышележащим «новым» образованиям) преимущественно носят возбуждающий стимулирующий характер, нисходящие (от вышележащих «новых» нервных образований к нижележащим «старым» нервным структурам) носят угнетающий тормозной характер. Эта схема согласуется с представлением о росте в процессе эволюции роли и значения тормозных процессов в осуществлении сложных интегративных рефлекторных ре­акций.

Date: 2015-09-24; view: 586; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию