Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Полимерное действие генов (полимерия)
Полимерия представляет собой явление взаимодействия генов, при котором несколько однотипных (однозначных) генов оказывают сходное воздействие на развитие одного и того же признака. Иначе говоря, полимерия обусловливается действием разного числа однозначных генов, которые, суммируясь, усиливают проявление признака, а при меньшем числе таких генов этот признак проявляется в соответственно меньшей степени. С явлением полимерии приходится сталкиваться при изучении так называемых количественных признаков. До сих пор, говоря о взаимодействии генов, мы касались главным образом альтернативных, т. е. качественно различных, признаков. Такие признаки, как, например, вес животного, яйценоскость кур, количество белка, в эндосперме зерна кукурузы и зерна пшеницы, содержание витаминов в растениях, скорость протекания биохимических реакций и т. п., нельзя разложить на четкие фенотипические классы; их необходимо оценивать и измерять количественно. Такие признаки называются количественными, или мерными. Изучение наследования количественно варьирующих признаков у различных особей одного и того же поколения было начато в первом десятилетии XX в. Шведский генетик Нильсон-Эле в 1908 г., скрещивая расы пшеницы, имеющие красные и белые зерна, обнаружил в первом поколении F1 обычное моногибридное расщепление 3:1. Однако при скрещивании некоторых линий пшениц с такими признаками он во втором поколении (F2) в 1910 г. получил расщепление в соотношении 15/16 окрашенных и 1/16 белых. Окраска зерен у первой группы, т. е. у 15/16 растений, варьировала от темно-красной до бледно-красной. Генетический анализ расщепления показал, что в данном случае красную окраску зерен определяют два доминантных неаллельных гена С и D. Сочетание аллелей этих генов в гомозиготном состоянии, т. е. сочетание ccdd, определяет отсутствие окраски. Интенсивность же окраски, т. е. степень варьирования (изменяемости признака), зависит от числа доминантных генов, присутствующих в генотипе. Так, гибрид (F1) от скрещивания ССDD (красные зерна) × ccdd (белые зерна), обусловленные присутствием доминантных генов. Во втором поколении F2 растения имели в генотипе разное число доминантных генов, а именно: 1) все четыре доминантных гена имелись у 1/16 растений: эти растения имели генотипы CCDD – самую интенсивную темно-красную окраску; 2) три доминантных гена имелись у 4/16 растений с генотипом CCDd, CcDD; 3) два доминантных гена оказались у 6/16 растений с генотипом CcDd, CCdd, ccDD; 4) один доминантный ген оказался у 4/16 растений типа Ccdd, ccDd. Все эти генотипы определяли различные промежуточные окраски, переходящие от интенсивно красной к белой. Всего таких форм было 15/16; 5) гомозиготной по обоим рецессивным генам, т. е. не имевшей ни одного доминантного гена, оказалась 1/16 часть растений с генотипом ccdd. Эти зерна оказались белыми. Частота той или иной окраски в этих пяти фенотипических группах составила ряд: 1+4 + 6 + 4+1. Этот ряд отображает изменчивость признака окраски зерна пшеницы в зависимости от числа доминантных генов в геноме растения. Очевидно, что если у гибрида F1 число таких полимерных генов, определяющих изменчивость и интенсивность проявления признака, будет не два, а три и более, то число комбинаций генотипов в F2 возрастет. Так, в опыте Нильсона-Эле тригибридное расщепление в F2 по окраске зерна пшеницы дало уже соотношение 63 красных: 1 неокрашенный. В этом случае наблюдались в F2 все переходы от самой интенсивной окраски зерен до полного отсутствия признака окраски. Частоты генотипов с разным количеством доминантных генов уже распределились в ряд: 1+6 + + 15+20+15 + 6+1=64 (здесь имеется уже значительная степень варьирования). Значит, чем большее число доминантных генов определяет признак, тем шире диапазон (амплитуда) фенотипической изменчивости. По типу полимерии, т. е. полимерных генов, наследуется цвет кожи у человека. Так, от брака негра и белой женщины рождаются дети с промежуточным цветом кожи (мулаты). А у супружеской пары двух мулатов рождаются дети всех возможных типов при комбинации двух неаллельных полимерных генов - от черной до белой кожи. Изучение полимерных (множественных) генов имеет большое значение, так как очень многие хозяйственно ценные признаки у растений и животных наследуются по типу полимерии (например, содержание сахара в корнеплодах свеклы, длина початка кукурузы и т. д.). Необходимо учитывать, что большая изменчивость признака прежде всего указывает на его сложную генетическую обусловленность, на большое число определяющих его факторов. Date: 2015-09-24; view: 4719; Нарушение авторских прав |