Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Спираль» — ЭПОС, в космос — на крыльях
Один из пионеров космонавтики — наш соотечественник инженер Фридрих Цандер в начале 20-х годов выдвинул идею межпланетных кораблей. В статье, опубликованной в 1924 году, он первым в мире предложил использовать для космических полетов крылатые аппараты и обосновал преимущество крыльев перед парашютным спуском орбитального корабля на землю. В 1927 году на Международной выставке, проходившей в Москве, демонстрировалась модель его крылатого аппарата для предполагаемых воздушно-космических полетов. И вот спустя 40–50 лет появились многоразовые корабли «Шаттл», «Буран». Но до появления универсальной ракетно-космической транспортной системы «Энергия» — «Буран» была оригинальная научно-техническая разработка, рассчитанная на приоритетное и экономичное развитие нашей космонавтики. В 1965 году в ОКБ А.И. Микояна группа специалистов, в основном молодых, под руководством опытного талантливого заместителя главного конструктора Г.Е. Лозино-Лозинского (впоследствии он стал генеральным директором — главным конструктором НПО «Молния», руководил работами по созданию планера «Бурана») приступила к исследованиям и проектированию двухступенчатой воздушно-космической системы (ВКС). Год спустя, в июне 1966 года, Глеб Евгеньевич, назначенный главным конструктором проекта «Спираль», так его назвали, выполнил аванпроект: Обе ступени ВКС с расчетной массой 115 тонн представляли собой состыкованные воедино крылатые широкофюзеляжные аппараты горизонтального взлета-посадки и многоразового использования. Спроектированы они были по схеме «несущий корпус — бесхвостка»: 52-тонный (длина 38 м, размах 16,5 м) мощный воздушный корабль-разгонщик до скорости 6 мах и отделяемый от него стартующий с его «спины» на высоте 28–30 тысяч метров 10-тонный пилотируемый орбитальный самолет длиной 8 м и размахом 7,4 м. На консоли его крыла приходилось лишь 3,4 м, а остальная, большая часть несущей поверхности соотносилась с шириной фюзеляжа. К этой птице, получившей название ЭПОС (экспериментальный пилотируемый орбитальный самолет) — или «Спираль», стыковался бак с ракетным топливом для вывода аппарата с гиперзвуковой скоростью на орбиту. В работу по созданию этой аэрокосмической системы многоразового использования включилось ОКБ Люльки. Под руководством заместителя главного конструктора Александра Васильевича Воронцова конструкторы начали проектировать для мощного самолета-разгонщика воздушно-водородный двигатель. В группу проектировщиков входили Юрий Николаевич Бытев, Константин Васильевич Кулешов, Алексей Дмитриевич Сынгаевский. «Большой трудностью, с которой мы встретились при проектировании этого двигателя, — вспоминает А.Д. Сынгаевский, — была температура перед компрессором 1650°, которая возникает на разгонщике при максимальной скорости 6 мах. Надо было обеспечить охлаждение турбины. Мы искали для этого разные способы. С построенным впоследствии «Бураном» и подобными кораблями за рубежом ЭПОС имел некоторое сходство по своим самолетным контурам, что было продиктовано условиями планирования в атмосфере. Но аппарат микояновцев по выбранной форме, компоновке, «горячей конструкции» (из жаростойких сплавов, без специальной теплозащиты) и поворотному крылу — то есть по всему, чем обеспечиваются хорошие аэродинамические характеристики на каждом участке траектории полета, существенно отличался от других разработок того времени. А главное — мог вывести космические полеты на экономичный путь развития. Ведь «крыльевой вариант» позволял активно использовать энергетический запас атмосферы, благодаря чему для вывода аппарата на космическую орбиту энергетических затрат требовалось в 6–8 раз меньше чем при использовании каких бы то ни было ракет. Но по тому пути не удалось пройти до конца из-за некомпетентного вмешательства некоторых партийно-государственных руководителей, и в частности тогдашнего министра обороны СССР А.А. Гречко. А ведь вначале ничто не предвещало помех. К тому же и сам генеральный конструктор А.И. Микоян всем своим авторитетом поддерживал группу конструкторов, в 1967 году уже приступивших к рабочему проектированию воздушно-космической системы. Вскоре под тему «Спираль» — ЭПОС в Дубне был создан космический филиал микояновской фирмы. Возглавил его заместитель главного конструктора ОКБ А.И. Микояна Петр Абрамович Шустер. Внимание к проекту воодушевляло специалистов — все работали с неистовым энтузиазмом молодости, веселым азартом. Олег Николаевич Некрасов, занимавшийся разработкой комплекса систем навигации и управления ЭПОСа, вспоминал, что намного раньше, чем определено графиком работ, была предъявлена к сдаче система управления. В быстром темпе разрабатывались и другие комплексы. И в таком же ритме проектировали двигатель АЛ-51 и мы, конструкторы КБ Люльки. Для исследования характеристик устойчивости и управляемости на разных этапах полета, оценки теплозащиты из высокопрочных жаростойких материалов построили аналоги ЭПОСа в трех разных комплектациях и летающие модели в масштабах 1:3 и 1:2, получившие название «Бор». Аналог для исследований в полетах на дозвуковой скорости — имитация атмосферного участка захода на посадку при возвращении с орбиты — получил кодовое обозначение «105.11», на сверхзвуке — «105.12», на гиперзвуковой скорости — «105.13». — Что характерно, — подчеркивал начальник ОКБ космического филиала Юрий Дмитриевич Блохин, — что основные конструкторские решения по всем комплектациям аналогов ЭПОСа были выполнены в единой, так сказать, сквозной схеме. В чем ее достоинство? Во-первых, трудоемкость в производстве при переходе от дозвукового варианта к гиперзвуковому возрастала незначительно. Да и росла только потому, что по мере усложнения решаемых задач на борт устанавливалось дополнительное и более совершенное оборудование. Во-вторых, благодаря сквозной схеме на подготовку производства к выпуску самих орбитальных самолетов времени потребовалось совсем немного. Многочисленные лабораторные исследования, продувки моделей и аналогов в аэродинамических трубах ЦАГИ им. Н.Е. Жуковского, их стендовые отработки, имитирующие разные режимы и этапы полета, позволили с высокой степенью достоверности определить аэродинамические характеристики планера. Они стали исходными данными для разработчиков различных систем ЭПОСа. Для уточнения результатов «трубных исследований» и изучения свойств новых материалов, предусмотренных в конструкции будущего орбитального самолета, были выполнены с помощью ракет запуски моделей «Бор» в масштабах 1:3 и 1:2. Конструкцию ЭПОСа делали достаточно легкой, но способной довольно долго работать в исключительно тяжелых условиях. Особенно при входе в плотные слои атмосферы после покидания космической орбиты. Ведь в полете с большой скоростью, а уход с орбиты предполагался на скорости, равной 8 км/с, в плотных слоях атмосферы возбуждаются чрезвычайно мощные тепловые потоки. В приграничном слое молекулы воздуха переходят в атомарный ряд, то есть разрушаются. А «осколки» — электроны, ионы и ядра атомов — образуют плазму, которая, соприкасаясь с поверхностью орбитального самолета, сильно нагревает ее. Наиболее подвержены нагреву передняя часть фюзеляжа, кромки крыла и киля. По мере роста скорости летательных аппаратов алюминий и его сплавы в авиационных конструкциях стали уступать свое место новым сплавам, обладающим более высокой жаропрочностью. Ко времени работы по программе ЭПОСа уже применялись титановые сплавы и жаропрочные стали. На подходе были еще более жаростойкие и пластичные — бериллиевые и ниобиевые. Однако выносливость нового орбитального аппарата обеспечивалась не только жаростойким облачением, но и его уникальными аэродинамическими характеристиками и совершенными конструкциями. Ведь ЭПОС был рассчитан на спуск с орбиты в режиме самобалансировки на очень больших углах атаки — до 53 градусов при гиперзвуковом качестве 0,8, нем оно больше, тем лучше возможность бокового маневрирования. При этом основная тепловая нагрузка должна была восприниматься теплозащитным экраном (ТЗЭ) оригинальной конструкции. Как показали теплопрочностные испытания гиперзвукового аналога «105.13» на специальном стенде, максимальный его нагрев не превысил +1500 градусов по Цельсию, а остальные элементы конструкции, находясь в аэродинамической тени от теплозащитного экрана, нагревались и того меньше. Поэтому в постройке аналогов можно было применять титановые и даже в отдельных местах алюминиевые сплавы без специального покрытия. «Буран» же впоследствии пришлось обклеивать более 38 тысячами очень дорогостоящих плиток, изготовленных по сложнейшей технологии на основе тонких волокон чистого кварта. Это только один из факторов экономичности разработки 60-х годов по сравнению с программой «Бурана». А какова конструкция самого экрана? Чтобы избежать разрушения от быстрого нагрева при входе в земную атмосферу, он должен обладать прежде всего высокой «пластичностью», какую мог бы обеспечить, к примеру, ниобиевый сплав. Но его тогда еще не выпускали, и конструкторы временно, до освоения производства ниобия, пошли на замену материала. Экран пришлось выполнить из жаропрочных сталей ВНС, причем не сплошным, а из множества пластин по принципу рыбьей чешуи. Он был подвешен на керамических подшипниках, при колебаниях температуры нагрева автоматически изменял свою форму, сохраняя стабильность положения относительно корпуса. Таким образом на всех режимах обеспечивалось постоянство конфигурации орбитального самолета. ЭПОС имел и такую конструктивную особенность: в режиме спуска до входа в плотные слои атмосферы поворотные консоли крыла занимали вертикальное положение, становясь своего рода килями. В результате они оказывались в значительной степени защищенными от аэродинамического нагрева, а также существенно улучшали боковую и путевую устойчивость аппарата. При уменьшении балансировочного угла до 30 градусов гиперзвуковое качество ЭПОСа улучшалось, возрастая до 1,5. Правда, нагрев экрана в таком случае мог заметно увеличиться, но не выше +1700 градусов — рубежа, допустимого для разрабатываемых сплавов. Зато возможности бокового маневрирования в атмосфере расширились: без включения двигателя, в чистом планировании можно было выбирать место посадки в радиусе 1500–1800 км. А с работающим воздушно-водородным двигателем АЛ-51, предусмотренным в компоновке ЭПОСа, расчетная дальность бокового маневра на дозвуковой крейсерской скорости далеко превосходила 2 тысячи километров. А дальность бокового маневра по трассе спуска из космоса — очень важна. От этого зависит возможность экстренного прекращения орбитального полета в случае необходимости. И если маневр имеет дальность более 2 тысяч километров, орбиту можно покинуть на любом витке и приземлиться в любой удобной точке на площади в миллионы квадратных километров, а это, пожалуй, вся азиатская часть территории нашей страны. Чтобы улучшить посадочные характеристики на последнем атмосферном участке спуска, была предусмотрена перебалансировка аппарата на малые углы атаки путем поворота консолей из фиксированного килевого положения в фиксированное крыльевое. Аэродинамическое качество в дозвуковом полете с разложенными консолями крыла возрастало до 4, а соответственно увеличивалась и дальность планирования. На основе научно-технических исследований по ЭПОСу специалисты проанализировали возможности перехода от малоразмерного одноместного орбитального самолета к транспортному многоместному. Выяснилась замечательная особенность этой конструкторской разработки. При копировании аппарата в укрупненном масштабе отличные аэродинамические характеристики ЭПОСа сохраняются полностью, а тепловая нагрузка в полете с тем же углом атаки 53 градуса даже может уменьшиться до +1200 градусов. Почему? Да благодаря тому, что местные радиусы кривизны обтекаемой поверхности увеличиваются, а удельная нагрузка на несущую поверхность уменьшается. Удачные посадочные характеристики ЭПОСа при укрупнении его масштабов также сохранялись или даже улучшались, что очень важно. Ведь в таком случае их можно было надежно отработать еще в полетах на аналогах малоразмерного орбитального аппарата. Итак, почти весь основной цикл испытаний ЭПОСа и его систем был выполнен еще на земле в аэродинамических трубах, на моделирующих установках и стендах, а затем на летающих лабораториях типа Л-18. Провели стендовые исследования и газодинамического управления применительно ко всем участкам траектории полета. Полученные результаты надо было проверить в реальных условиях. Прежде всего — в полетах на аналогах ЭПОСа. Дозвуковой аналог «105.11» создали к середине 70-х годов. Этот аппарат можно посмотреть в музее Военно-воздушных сил в подмосковном Монино. Он с присущими самолету аэродинамическими органами управления: элевонами, рулем направления на киле, балансировочным щитком. Непривычно только 4-стоечное убирающееся шасси. Стойки разнесены вдоль фюзеляжа попарно, что обеспечивало особенно хорошую устойчивость на пробеге. «Обуты» они в лыжи из износостойкого металла — пробег после приземления получался коротким. Эта прочная четырехногая «птица» могла производить посадку в любом месте на более-менее ровный грунт, ей даже не требовались специальные аэродромы с бетонным покрытием. Нужно только передние стойки «переобуть» в пневматические колеса и снять характеристики сил, воздействующих на шасси в лыжном варианте при движении аппарата по земле. Аналог ЭПОСа доставили на полигон в конце огромного испытательного аэродрома «Владимирское» в заволжской степи. Специальным краном поставили на твердый, прокаленный горячими ветрами грунт. Под тяжестью конструкции лыжи накрепко впечатались в него. Летчик-испытатель микояновской фирмы Авиард Фастовец занял место в кабине. Бешено загрохотал запущенный им двигатель, но аппарат — ни с места. Полили грунтовую полосу водой — не помогло. Летчик выключил двигатель, специалисты гадали, что предпринять. К изумлению всех присутствующих, начальник полигона Иван Иванович Загребельный посоветовал: «Перед аппаратом надо разбить арбузы — их здесь много. Вот тогда он побежит наверняка». Это показалось дикой фантазией. Но других предложений не было. Согласились с этим. По распоряжению Загребельного появились грузовики с огромными арбузами. Их сбрасывали на землю, застилали ее скользкой алой мякотью. Подняв аппарат краном, подложили куски арбузов под все лыжи. Фастовец сел в кабину. Когда обороты двигателя вышли на максимальные, аппарат наконец стронулся и, ко всеобщей радости, заскользил по полосе все быстрей и быстрей… Смекалка аэродромного специалиста помогла испытательное задание выполнить без особой задержки. К летным испытаниям дозвукового аналога в лыжноколесном варианте приступили следующей весной, в мае 1976 года. Вначале выполнялись «подлеты»: после отрыва от земли «105.11» сразу же по прямой шел на посадку. Таким образом его опробовали заслуженные летчики-испытатели СССР Игорь Волк (он впоследствии первым поднимет в небо и аналог «Бурана»), Валерий Меницкий, Петр Остапенко, Авиард Фастовец, а также военные летчики-испытатели Герой Советского Союза полковник Александр Федотов (впоследствии генерал-майор авиации) и полковник Василий Урядов. Наряду с летчиками микояновской фирмы, инженерами МАЛ в испытаниях по программе ЭПОСа участвовали и военные специалисты Государственного НИИ ВВС. Основная нагрузка в летных испытаниях легла на плечи Фастовца и Урядова. Первый из них в том же году 11 октября успел совершить еще и короткий перелет с одной ВПП просторного аэродрома на другую. А через год стал готовиться к воздушным стартам с самолета-носителя. Для этого оборудовали тяжелый бомбардировщик Ту-95К. Он, словно большая наседка, втягивал под свой фюзеляж «птенца». Кабина аналога до половины остекления уходила за обрез бомболюка, с которого сняли створки, а воздухозаборник двигателя оказывался полностью скрытым в фюзеляже носителя. И все же у пилота аналога оставалась возможность для обзора в передней полусфере. А вот для запуска двигателя пришлось смонтировать дополнительную систему наддува. Первым поднял эту сцепку в небо экипаж заместителя начальника службы летных испытаний бомбардировочной авиации подполковник Александр Обелов (позже генерал-майор авиации). Вначале проверялась только возможность выпуска аналога на держателях в воздушный поток и включения его двигателя РД-36К. Особых затруднений это не вызывало. Лишь один раз РД-36К как бы «чихнул» на высоте — зависли обороты. Но по мере снижения, как требовалось, вышел на заданные обороты. Он и предназначен был для работы в таком режиме на атмосферном участке полета после условного покидания орбиты. 27 октября 1977 года наступил тревожно ответственный час. Напутствуемый экипажем Ту-95, место в привычной уже ему кабине дозвукового аналога ЭПОСа занял Герой Советского Союза, заслуженный летчик-испытатель СССР Авиард Фастовец. Держатели подтянули аппарат к люку. Загрохотали турбинами и винтами все четыре двигателя носителя, и он после нелегкого разбега уходит в осеннее небо. На высоте 5 тысяч метров сцепка ложится на «боевой курс». Рассчитал его заслуженный штурман-испытатель СССР полковник Юрий Ловков так, чтобы в случае экстремальной ситуации после отцепки Фастовец смог без больших эволюции, снижаясь только по прямой, «вписаться» в посадочную глиссаду и приземлиться на своем аэродроме. По самолетному переговорному устройству (СПУ), к которому подключен аналог, штурман с борта Ту-95К предупреждает Фастовца: «Готовность ноль-четыре». Авиард Гаврилович Фастовец рассказывал: «До расцепки оставалось 4 минуты, мы шли в большом разрыве облачного слоя. Сползая, под фюзеляжем носителя на длинных держателей в воздушный поток моя «птица» мелко подрагивала от напора струй. Отклонен балансировочный щиток, чтобы сразу после отцепки обеспечить пикирующий момент, поскольку опасались подсоса в струе между фюзеляжами Ту и аналога. Запустил двигатель — работает надежно. — Двигатель в норме! — доложил я командиру экипажа носителя и продолжил последнюю проверку систем. «Готовность ноль-один», — доносит СПУ. Но я уже полностью готов, о чем и сообщил. Затем слышу: «Сброс!» Знаю, что сейчас штурман Ловков нажал кнопку на приборной доске Ту-95, чтобы раскрыть замки держателей. Аппарат отделился, довольно круто опустил нос. Наверное, немного перестарались с балансировкой, настроив на быстрейший уход из струи от носителя. Парировал отклонением рулей — аналог слушался их хорошо. Автономный полет продолжался по заданной программе без больших отклонений. Значит, воздушный старт для отработки аналога вполне годится». Конечно, в реальных условиях сам ЭПОС стартовал бы с другой целью — для выхода на космическую орбиту и совсем иначе: не с «брюха» Ту-95, а со «спины» широкофюзеляжного разгонщика. Великолепную модель этой уникальной стреловидной машины, с совершенными аэродинамическими формами можно было увидеть в кабинете генерального директора НПО «Молния» Глеба Евгеньевича Лозино-Лозинского. Значение намечавшегося старта трудно переоценить. Открывалась возможность запуска орбитального самолета практически в любой географической точке над планетой, отпадала необходимость в наземных космодромах. Разрабатываемый ЭПОС был пока невелик, но его можно было построить и в более крупном масштабе. Важно убедиться, что чем ближе старт к экватору, тем эффективнее можно использовать для разгона силу вращения Земли, чтобы выводить на космическую орбиту груз большей массы. Испытания дозвукового аналога продолжались и в 1978 году, пополняя научно-технический задел программы ЭПОСа. Отцепка, полет с возрастающей каждый раз степенью сложности, посадка на лыжи. Еще 4 раза проводились старты из-под фюзеляжа Ту-95К, экипаж которого возглавлял командир испытательной авиаэскадрильи полковник Анатолий Кучеренко. Но, к сожалению, темпы работ по теме «Спираль» стали замедляться. На судьбе ЭПОСа сказалась некомпетентность некоторых государственных руководителей. К примеру, маршал Советского Союза А.А. Гречко, бегло ознакомившись с аналогом «105.11» в начальной стадии работ, безапелляционно заявил: «Фантазией мы заниматься не будем». Маршал в ту пору был членом Политбюро ЦК КПСС, министром обороны СССР, от его решения во многом зависела реализация любого проекта. Сказалось и то, что космическое ведомство, представляемое Министерством общего машиностроения, было оторвано от авиапрома. Как раз в ту пору, когда для создания сверхзвукового — «105.12» и гиперзвукового — «105.13» аналогов ЭПОСа требовалось кооперирование усилий, между ними возникли трения. По настоянию руководителей, ответственных за космонавтику (в частности, Д.Ф. Устинова и министра общего машиностроения С.А. Афанасьева), наши конструкторы вынуждены были в 1976 году броситься догонять американцев, которые в то время уже занимались программой челночных полетов «Спейс шаттл». Министерство общего машиностроения, получив госзаказ на создание системы «Энергия» — «Буран», потянуло одеяло на себя. Тема «Спираль», разрабатываемая Г.Е. Лозино-Лозинским и его помощниками, оказалась вроде бы лишней. Напрасно они пытались убедить «верхи» в том, что работы, проведенные по программе ЭПОСа, полученный в результате научно-технический задел в ту пору был единственной в СССР альтернативой созданию многоразовой транспортной космической системы вообще, а по «горячей конструкции» — в особенности. Ссылались и на то, что в США фирма «Макдоннел-Дуглас» свыше 7 лет проводила успешные исследования и эксперименты по отработке аппарата с несущим корпусом, используя для этого малоразмерные аналоги типа Х-24, от которых можно было бы в дальнейшем перейти к созданию многоместного транспортного орбитального самолета в схеме «несущий корпус». Но ей пришлось уступить фирме «Рокуэлл», протолкнувшей свой проект «Шаттла», хотя и не по техническим причинам — просто у «Макдоннел-Дуглас» оказались слабее связи с Пентагоном. Ныне американцы, разочаровавшись из-за катастрофы и аварий в «Шаттлах», возобновили работы по созданию воздушно-космического самолета с горизонтальными стартом и посадкой на обычные ВГШ. По их расчетам, этот аппарат обеспечит многократные полеты в космос в несколько раз по сравнению с «Шаттлом» меньшей стоимостью выведения грузов на орбиты. Окончательное прекращение летных экспериментов на аналоге «105.11» произошло после его поломки при посадке в сентябре 1978 года. В тот раз его пилотировал военный летчик-испытатель полковник Василий Урядов, наблюдал за ним, сопровождая в полете на МиГ-23, Авиард Фастовец. Заходить на посадку пришлось против закатного солнца, видимость ограничивала дымка. Незадолго перед тем полосу расширили, переставили ограничительные флажки. Но расчистить до конца, заровнять колдобины и ямы не успели. Руководителем полетов был Герой Советского Союза, заслуженный летчик-испытатель СССР генерал-майор авиации Вадим Петров, но его подвела плохая видимость. По ошибке приняв уклонившийся влево МиГ Фастовца за аналог, Вадим Иванович дал команду Урядову повернуть вправо. Тот ее выполнил. Снижаясь против солнца, Василий поздно заметил, что приземляется правее полосы. Реакция опытного испытателя позволила ему в последний момент отвернуть и войти в зону флажков, но на большее высоты не хватило. Аппарат грубо приземлился на неровную почву, но аналог не разрушился — появились лишь трещины в силовом шпангоуте. Летчики все равно испытывали глубокую досаду. А специалистам этот случай дал возможность проверить, соответствуют ли их расчеты прочности конструкции испытанным нагрузкам. Результаты проверки показали, что аналог ЭПОСа выдержал труднейший экзамен. Его вскоре восстановили. Только летать ему больше уже не пришлось. Но судьбу темы «Спираль» решил не этот случай. Как и в судьбе ряда других проектов, здесь отразилось неумение руководителей отраслей предвидеть перспективы развития техники, безоглядная ориентация на чужой опыт в ущерб здравому смыслу. Напугал руководство страны полет «Шаттла» над Москвой. Решено было, что нам нужен многоразовый аппарат такого же типа. Конечно, опыт, обретенный теми, кто участвовал в разработке и испытаниях по программе ЭПОСа, не пропал даром. Хотя космический филиал микояновской фирмы вскоре пришлось закрыть, 48 специалистов из Дубны были переведены в созданное для разработки «Бурана» НПО «Молния». В КБ Люльки прекратили заниматься проектом двигателя АЛ-51. Положительно отразился опыт участия в экспериментах с аналогом ЭПОСа в судьбе летчиков. Анатолию Петровичу Кучеренко министр авиационной промышленности в 1980 году предложил «научить летать» ВМ-Т «Атлант», созданный на базе стратегического бомбардировщика конструкции В.М. Мясищева и предназначенный для перевозки на его «спине» элементов конструкции ракеты «Энергия» и орбитального корабля «Буран». Кучеренко успешно справился с этой трудной задачей, за что удостоился почетного звания «Заслуженный летчик-испытатель СССР». Герой Советского Союза, заслуженный летчик-испытатель СССР Игорь Петрович Волк, летчик-космонавт, выполнявший подлеты на аппарате «105. II», первым поднимет в небо аналог «Бурана» и внесет существенный вклад в летную отработку автоматической посадки самого орбитального корабля многоразового использования. И все-таки тема ЭПОС не была забыта. Ведь с точки зрения аэродинамики орбитальный самолет вполне отработан. Опираясь на этот опыт, лауреат Ленинской и Государственных премий СССР, Герой Социалистического Труда, доктор технических наук Глеб Евгеньевич. Лозино-Лозинский в октябре 1989 года на 40-м конгрессе Международной астронавтической федерации в Малаге, где собрались представители 130 организаций из десятков стран, выступил с предложением по реализации проекта многоразовой аэрокосмической системы, в которой первой ступенью может быть самый мощный воздушный корабль Ан-225 «Мрия» — «Мечта», позволяющий стартовать со своей «спины» небольшому орбитальному самолету с подвесным топливным баком — единственным одноразовым элементом в этой сцепке. Остальные рассчитаны на многократное использование. Система обладает всеми преимуществами, особенно оперативностью и надежностью авиационных стартов. Это предложение, ставшее настоящей сенсацией, могло бы принести большие выгоды мировому сообществу в освоении космоса.
«ЭНЕРГИЯ» — «БУРАН»
Сообщение ТАСС: «15 ноября 1988 года в Советском Союзе проведены успешные испытания космического корабля многоразового использования «Буран». После старта универсальной ракетно-космической транспортной системы «Энергия» с кораблем «Буран» орбитальный корабль вышел на расчетную орбиту, совершил двухвитковый полет вокруг Земли и приземлился в автоматическом режиме на посадочной полосе космодрома Байконур. Корабль «Буран» построен по схеме самолета типа «бесхвостка» с треугольным крылом переменной стреловидности, имеет аэродинамические органы управления, работающие при посадке после возвращения в плотные слои атмосферы, — руль направления и элевоны. Он способен совершать управляемый спуск в атмосфере с боковым маневром до 2000 километров. Длина «Бурана» 36,4 метра, размах крыла около 24 метров, высота корабля, когда он стоит на шасси, более 16 метров. Стартовая масса корабля более 100 тонн, из которых 14 тонн приходится на топливо. В его обширном грузовом-отсеке может размещаться полезный груз массой до 30 тонн. В носовой отсек вставлена герметичная цельносварная кабина для экипажа и большей части аппаратуры для обеспечения полета в составе ракетно-космического комплекса, автономного полета на орбите, спуска и посадки. Объем кабины более 7 кубических метров. Очень важной особенностью «Бурана» является его мощная тепловая защита, обеспечивающая нормальные тепловые условия для конструкции корабля при прохождении плотных слоев атмосферы во время посадки. Теплозащитное покрытие состоит из большого числа (около 39 тысяч) плиток, изготовленных с высокой точностью из специальных материалов (кварцевое волокно, высокотемпературные органические волокна, частично материал на основе углерода) по программам, учитывающим место установки каждой плитки на корпусе. В хвостовой части корабля расположена основная двигательная установка, две группы двигателей для маневрирования размещены в конце хвостового отсека и в передней части корпуса. Бортовой комплекс управления состоит более чем из пятидесяти систем, которые управляются автоматически по программам, заложенным в бортовую вычислительную машину.
15 ноября 1988 года в Советском Союзе были проведены успешные испытания космического корабля многоразового использования «Буран». Автоматическая посадка его была с точностью в один метр. К созданию универсальной ракетно-космической транспортной системы «Энергия» — «Буран» причастно КБ Люльки. Для ракетоносителя «Энергия» спроектировали турбопривод ТП-22, работающий на газообразном водороде… Конструкторы разработали ракетно-турбинный двигатель РТВД-14 для «Бурана» — автономный источник энергии для привода насосов гидросистем летательных аппаратов. Им начали заниматься с 1981 года под руководством А.М. Люльки. Первый полет «Бурана» продолжался 205 минут и завершился успешной посадкой на специальную посадочную полосу длиной около 5 километров и шириной 80 метров, созданную в районе космодрома Байконур. Это была первая в истории космонавтики автоматическая посадка космического корабля многоразового использования. Сделан новый выдающийся вклад в освоение космоса, советская наука и техника одержали блестящую победу». А начиналось это так. В 1976 году на Тушинском машиностроительном заводе было создано Научно-производственное объединение «Молния». Там под руководством генерального конструктора Глеба Евгеньевича Лозино-Лозинского началось проектирование орбитального корабля или космического самолета многоразового использования. Его назвали «Буран». Некоторые создатели корабля предлагали назвать его «Громом». Но генеральный отказался: «Слишком претенциозно. НПО «Молния», корабль «Гром». «Буран» — это тоже динамично, но менее вызывающе». Генеральный конструктор Валентин Петрович Глушко создавал для вывода его на орбиту мощнейшую ракету «Энергия». Под «Буран» построены огромные производственные, сборочные, монтажные, исследовательские, лабораторные корпуса. Укомплектованные новейшим оборудованием, приборами, компьютерами. Проектирование велось на высоком научно-техническом уровне. И сам «Буран» был сгусток новейших достижений науки и техники. Американцы же делали «Шаттл» — часть СОИ — стратегической оборонной инициативы, — он смог сбить все наши спутники. Правильно сказано: «Кто владеет космосом — тот владеет миром». Активным участником создания изделий для этих космических систем было ОКБ Люльки. В конце 70-х конструкторы приступили к разработке вспомогательных силовых установок (ВСУ) для ракеты носителя «Энергия» и специальных источников питания, бортовой энергетики для обеспечения жизнедеятельности «Бурана». ОКБ получило также задание спроектировать и изготовить для «Бурана» два двигателя типа АЛ-31без форсажной камеры и с жестким соплом. Они предназначались для точного приземления космического самолета. Для привода насосов гидросистем «Бурана» проектировался ракетно-турбовальный двигатель РТВД. Из-за строгой секретности его назвали изделие «14». На «Буране» их установят 3 экземпляра. Модификация его — турбопривод для ракеты-носителя «Энергия» — изделие «22». В этих изделиях применены совершенно новые конструктивные и технологические особенности, не применявшиеся ранее в авиационных и ракетных двигателях. Сюда следует отнести использование в качестве топлива гидразина с разложением его в каталическом реакторе. Применение турбины с номинальной частотой вращения 55000 об/мин потребовало создания новых подшипников и уплотнений. Для улучшения удельных расходов введена пульсирующая подача топлива. Необычной была маслосистема с одним насосом, который одновременно был откачивающим и напорным.
Главный конструктор, кандидат технических наук Ювеналий Павлович Марчуков. Руководитель темы по космической тематике — «Энергия» — «Буран». Главным конструктором по этим изделиям был Ювеналий Павлович Марчуков. Талантливый инженер, энергичный требовательный руководитель, он никогда не давал расслабиться. Под его руководством работала команда инженеров: М.Ф. Вольман, Л.И. Барбаш, О.И. Орлов, В.А. Фадеев, Н.Н. Булычев, О.Н. Никутов и др. Все они работали напряженно, Не считаясь со временем. «Мне, как бывшему ЖРДисту, — говорит Олег Николаевич Никутов, — предложили возглавить работу по доводке турбин, которые через редуктор передают крутящий момент плунжерным насосам типа НП-113». Рассказывает Николай Николаевич Булычев: «Изделие «22» предназначалось для привода гидравлического насоса НП-113 агрегата гидравлического питания системы рулевых приводов одного из блоков ракеты «Энергия». Оно представляет собой турбопривод, в котором энергия газа преобразуется в турбине во вращательное движение вала, которое через редуктор и рессору передается на гидронасос. Изделие «22» было задано первоначально как модификация изделия «14», отличающаяся от него тем, что применено другое рабочее тело — вместо однокомпонентного топлива гидразина, разлагающегося на катализаторе, использовался водород высокого давления, отбирающийся от рубашки охлаждения кислородо-водородного ЖРД. Но затем, в процессе проектирования и доводки изделия оно приобретало все более самостоятельный облик и превратилось в полноправное, независимое изделие турбопривод «ТП-22». В процессе доводки изделий «22» и «14» конструкторы столкнулись с целым рядом проблем: — огромные обороты вала турбины — 55 000 оборотов в минуту — это почти 1000 оборотов в секунду; — обеспечение работоспособности изделий в условиях космического вакуума и температур, проверка и подтверждение этой работоспособности в земных условиях. Большой проблемой стала доводка подшипников основного, самого высокооборотного вала турбины. На первой стадии доводки турбоприводы ломались буквально через один. Оказалось, что более надежно работают подшипники с повышенным радиальным зазором и увеличенным зазором между наружной обоймой и корпусом. Поняли, что при очень большом градиенте набора оборотов турбины подшипник должен как бы самовыставиться, то есть найти наиболее удобное для себя положение. А этому способствуют большие зазоры… Тогда были заказаны подшипники специально для этого изделия, у которых почти вдвое по сравнению со стандартным увеличен радиальный зазор. Зазор между наружной обоймой и корпусом увеличили также почти вдвое. После этих изменений о проблемах с подшипником забыли. В процессе доводки изделий «14» и «22» провели огромный объем ресурсных и специальных испытаний, подтверждающих буквально каждый пункт требований технического задания. Таково требование специального документа о подтверждении надежности изделий, предназначенных для космических полетов. Для проведения различных видов испытаний было изготовлено и испытано более восьмидесяти изделий. Для отработки автоматической посадки с заданной точностью был создан аналог «Бурана» — большой транспортный самолет БТС-002, конструкции В.М. Мясищева. На него дополнительно к бесфорсажным двигателям были установлены два форсажных двигателя АЛ-31Ф. Для пилотирования БТС и проведения других летных испытаний подобрали группу опытных космонавтов-испытателей из 11 человек. Руководил группой Герой Советского Союза заслуженный летчик-испытатель Игорь Петрович Волк. Первые полеты на Большом транспортном самолете провели летчики-испытатели Игорь Волк и Римантас Станкявичюс. Представителем ОКБ Люльки на этих испытаниях был Л.И. Римский. После полетов И. Волк рассказывал: «Было очень непривычно видеть при имитации автоматической посадки, как штурвал двигался без вмешательства летчика. Приходилось себя заставлять к нему не притрагиваться». Первый полет БТС состоялся 10 ноября 1985 года. Всего проведено около 25 полетов, из них 15 — с полностью автоматическим окончанием посадки. Замечаний по работе двигателей АЛ не было. В начале разработки орбитального корабля группа специалистов КБ — Ю.П. Марчуков, А.В. Воронцов, Ю.Н. Бытев, К.В. Кулешов, А.Д. Сынгаевский — была принята в Жуковском на экспериментальном машиностроительном заводе (ЭМЗ) генеральным конструктором Владимиром Михайловичем Мясищевым. В своем КБ он ознакомил их с макетом кабины «Бурана», выполненным в дереве, кабина была двухпалубная. В командном отсеке установлены два кресла для командира и второго пилота, у задней стенки для работы с оборудованием два кресла для бортинженера и оператора. На нижней палубе в бытовом отсеке размещалось шесть кресел для дополнительных членов экипажа, приборы, спальные места, буфет с рационом питания и многое другое. Ниже размещался агрегатный отсек, в котором находились крупные блоки обеспечения средств жизнедеятельности. «После всего увиденного, — говорит Алексей Сынгаевский, — хотелось срочно засучить рукава и работать, работать…» И КБ Люльки в начале 80-х годов интенсивно работало над созданием специальных двигателей: энергоисточников для приводов насосов гидросистем. Из воспоминаний главного конструктора космической темы в ОКБ Люльки Ювеналия Павловича Марчукова: «Наш компактный, малогабаритный 1,2 х 1,5 м ракетно-турбовальный двигатель РТВД (изделие «14») устанавливался на проставку гидросистемы, которая закреплена на каркасе фюзеляжа «Бурана». РТВД, являясь механическим приводом гидронасоса, мог надежно работать на эффективном однокомпонентном топливе — гидразине во всех условиях эксплуатации орбитального корабля: при вибрационных и акустических нагружениях, в вакууме и условиях невесомости. Топливо гидразин был применен впервые. Для подобного типа двигателей гидразин был мало изучен и небезопасен. Для испытаний двигателя РТВД под Загорском построили специальный стенд. Во время доводки двигателя на стенде произошел сильнейший взрыв топливного бака с гидразином. Комиссия, изучавшая причину взрыва, по эквиваленту приравняла его к 500-килограммовой авиабомбе. По счастливой случайности человеческих жертв не было. Оператор в это время находился за бронированной стеной, что и спасло его. Он только здорово перепугался». Вскоре после этого на совещании у министра общего машиностроения (МОМ) Сергея Александровича Афанасьева, где присутствовал Ю.П. Марчуков, Валентин Петрович Глушко предложил закрыть тему изделия «14». Он утверждал, что пока не совсем освоили гидразин, использовать его небезопасно и, что страшнее всего, взрыв может произойти не только на стенде, но и на «Буране». Глушко требовал разработать новые схемы, альтернативные изделию «14». А что значит новые схемы? Их надо спроектировать, изготовить в производстве, испытать. На это уйдет не менее пяти лет. Экспертная комиссия ЦИАМ, ГИПХ — Государственный институт прикладной химии — и другие убедительно доказывали, что при строгом соблюдении всех технологических требований к гидразину аварии будут исключены. В результате этого совещания в Министерстве общего машиностроения Государственная комиссия во главе с министром Афанасьевым приняла решение продолжить отработку РТВД — ракетно-турбовального двигателя на гидразине. В 1983 году для ракеты-носителя «Энергия» начали разрабатывать три турбопривода — ТП-22. Они станут энергетическими источниками для гидросистемы управления вектором тяги маршевых двигателей ракеты «Энергия». Работая на газообразном водороде, поддерживая заданное вращение выходного вала, при больших изменениях загрузки они выдерживают широкие диапазоны внешних воздействий. После большого объема работ под руководством В.М. Чепкина и Ю.П. Марчукова три ТП-22 были подготовлены к межведомственным испытаниям в составе «Энергии». Первые летные испытания ракетоносителя «Энергия» без «Бурана» проведены 15 мая 1987 года. Они прошли успешно, турбоприводы ТП-22 обеспечили надежную работу гидросистем. Впереди предстоял совместный полет «Энергии» и «Бурана». К нему усиленно готовились все участники этого грандиозного события. По существу, вся гидравлическая система управления «Энергией» и «Бураном» базировалась на изделиях «22» и «14». Из рассказа старшего военпреда Ильи Ивановича Косолапова: «У А.М. Люльки были замечательные помощники, талантливые специалисты, такие, как главные конструкторы Юрий Николаевич Бытев, Василий Кондратьевич Кобченко, Ювеналий Павлович Марчуков и другие. Особо надо отметить ответственные, сложные работы, возглавляемые Ювеналием Павловичем Марчуковым по космической теме. Параллельно с созданием двухконтурного АЛ-31Ф создавались вспомогательные силовые установки, ракетно-турбовальный двигатель, турбопривод, автономные источники энергии для привода насосов гидросистем орбитального корабля «Буран» и «Энергии». Двигатели силовой установки «12А» и «12Ф» на базе двигателя АЛ-31Ф созданы для обеспечения летных испытаний аналогов орбитального корабля «Буран» — большого транспортного самолета БТС-002. Особенно сложной была доводка изделия «14», оно не характерное для ТРД, поэтому шло «тяжело». Нас с Ювеналием Павловичем вызвали в ЦК КПСС, где нам сделали внушение: «Вы, очевидно, недопонимаете той ответственности, которая на вас возложена в связи с созданием орбитального корабля «Буран» и последствий срыва заданных сроков». Было дано указание в 3-дневный срок доложить фактическое положение дел с доводкой изделия «14». Мы изрядно поволновались… Требуемые материалы представили в срок, правда, реакции со стороны ЦК КПСС никакой не было». Первый полет системы «Энергия» — «Буран» был намечен на 29 октября 1988 года. На Байконуре проведена большая подготовка. Ведь на этой системе около сотни только основных систем и комплексов. Все их нужно было детально проверить. Для безопасности главные конструкторы В. Глушко, Г. Лозино-Лозинский, Ю. Марчуков и многие другие главные многочисленных систем и комплексов находились в этот день в боксе примерно в километре от пусковой платформы на Байконуре. Прошла команда на полет, началась отработка циклограммы запуска по всем системам, включились и все три изделия «14». А через несколько секунд команда «Отбой». Это потрясение… не только для непосредственных участников подготовки полета. Это удар и для сотен тысяч ученых, конструкторов, инженеров, испытателей, производственников — создателей этой авиакосмической техники. «Минут через 10, — вспоминает Ю.П. Марчуков, — прошел слух, будто предварительный анализ циклограммы показал, что одна из причин отбоя — нештатная работа изделия «14». Вот тут-то нам, люльковцам, пришлось страшно поволноваться… А через минут 45 после тщательного анализа циклограммы выяснилось: изделие «14» нашего КБ работало штатно, надежно, без замечаний. Оказалось, что отмена пуска произошла из-за задержки отхода стендовой мачты. После устранения этого дефекта вылет наметили на середину ноября 1988 года. Настало 15 ноября. Какое напряжение… Все ли учтено и проверено? Конечно, напряженность в этот день усиливалась предшествующей отменой старта. 15 ноября вся циклограмма предстартовой подготовки проходит без замечаний. Точно в 6.00 московского времени ракета-носитель «Энергия» с многоразовым орбитальным кораблем «Буран» отрываются от стартового стола и уходят в низкую облачность. Восемь минут выведения на орбиту, и «Буран» начинает свой самостоятельный полет… Особенность баллистической схемы полета комплекса «Энергия» — «Буран» в том, что после завершения работы носителя высота над поверхностью Земли составляет около 150 км и требуется доведение «Бурана» на рабочую орбиту собственными средствами. Поэтому в первые 40 минут проводятся два маневра довыведения корабля на высоту 260 км. Бортовой цифровой вычислительный комплекс (БЦВК) автоматически рассчитывает величину, направление и момент импульса-двигательной установки. Первый маневр проходит в зоне связи наземных станций слежения, второй над Тихим океаном. В этих маневрах участвуют и ракетно-турбовальные двигатели РТВД-14. Четко работает командная радиолиния, исполняются все передаваемые из Центра управления полетом — ЦУПа — команды на управление телеметрической и телевизионной системами «Бурана». Наступает одна из завершающих операций — перегрузка оперативной памяти БЦВК для работы на участке спуска и перекачка топлива из носовых баков в кормовые для обеспечения посадочной центровки. Проходят все полтора часа полета, и БЦВК уже рассчитывает и сообщает в ЦУП параметры тормозного маневра для схода с орбиты. В 8 часов 20 минут включается двигатель, отрабатывает заданную величину скорости, и корабль начинает снижение. Еще через полчаса он входит в атмосферу и в 8 ч 53 мин на высоте 90 км связь с ним прекращается из-за плазменных образований. Движение «Бурана» в плазме по расчету 6—19 мин. Наконец, в 9 ч 11 мин, когда корабль находился на высоте 50 км, пошли доклады по громкой связи: «Есть прием телеметрии!», «Есть обнаружение корабля средствами посадочных локаторов!», «Системы корабля работают нормально!» В этот момент «Буран» отделяло от посадочной полосы около 550 км, а скорость его хотя и уменьшилась, но все еще в десять раз превышала скорость звука. До посадки чуть больше 10 минут. Скорость корабля в атмосфере интенсивно гасится. Движение «Бурана» идет строго по расчетной траектории снижения. «На высоте около 7 км на сближение с «Бураном» выходит самолет сопровождения МиГ-25, ведомый Магомедом Толбоевым. Начинается завершающее предпосадочное маневрирование. На высоте 4 км — выход на посадочную глиссаду. Изображение «Бурана» начинают передавать аэродромные телекамеры. «Буран» уже успел сменить курс, заложив разворот против ветра, и его ждут с востока, а не с запада. У стекол диспетчерских залов и на балкончике здания специалисты, летчики, журналисты налезают друг на друга, чтобы не упустить исторические мгновения. Зам. главного конструктора по испытаниям «Бурана» Геннадию Дементьеву — заму Г.Е. Лозино-Лозинского — и еще нескольким сотрудникам КБ удалось протиснуться к самим стеклам КДП. Хотя они уверены в благополучной посадке, но авиакосмос есть авиакосмос. «Буран» бесшумной тенью вынырнул из облаков так круто, что еще секунда, и врежется в землю. Все замерли в разных позах. Но прямо над поверхностью чисто и аккуратно выровнялся, выпустил шасси и с бережной плавностью в 9 часов 24 минуты коснулся полосы. С точностью до одного метра. И это при жестком ветре. Это фантастично и невероятно. Необычно красивая, изящная, точная посадка восьмидесятитонной махины. Просто не верилось, что полет беспилотный! Гул одобрения и восторга раздался на КДП. Сквозь ветер донеслось: «Ура!» Десятки машин, собравшись у поля, засигналили марш. Автоматический полет орбитального корабля «Буран» завешен. Впервые в мировой практике осуществлена беспилотная посадка космического самолета на посадочную полосу аэродрома, и все убедились в великой силе советской науки и техники. Ювеналий Павлович Марчуков в числе первых оказался под крылом «Бурана»: «Я испытал огромное чувство радости и гордости за наше КБ. Изделия, созданные нами, сработали на «Энергии» и «Буране» успешно, без всяких замечаний. Подъехали к «Бурану» Валентин Петрович Глушко, Глеб Евгеньевич Лозино-Лозинский, а также разработчики многих систем. Мы все поздравляли друг друга с великолепным окончанием грандиозной эпопеи. Обнимались, целовались. Это был незабываемый праздник для сотен тысяч людей, участников создания комплекса «Энергия» — «Буран», праздник для всей огромной страны, праздник, который никогда не забудется и войдет в историю международной авиакосмонавтики». Миллионы людей в мире следили за стартом и посадкой «Бурана». Большой интерес проявили американцы. Комментарии полету советского «челнока» посвятили крупнейшие телекомпании Си-би-эс, Эй-би-си. «Создание «Бурана», — высказался видный специалист в области многоразовой космической техники Джон Оберт, — серьезное достижение советских ученых, своего рода прыжок вперед. Особенно впечатляет посадка корабля на аэродром, осуществленная в беспилотном варианте с помощью радиокоманд. Это наиболее сложная часть полета, и она была проведена поразительно точно, безупречно». Да, наша наука, техника производство сделали то, что американцам не удалось сделать до сих пор. Тогда казалось, что полет первого советского орбитального корабля — начало новой эры в освоении Вселенной. Предполагалось, что за первым полетом последуют еще два беспилотных, а затем космический корабль примет на борт двух космонавтов. Старт корабля «Буран-2» был намечен на 1991 год, планировалось, что он состыкуется с орбитальной станцией «Мир» (по требованию американцев ее затопили через 10 лет). Но тот год оказался страшным для нашей истории. Был разрушен великий Советский Союз. Полет «Бурана-2» перенесли на 92-й, потом на 93-й, 94-й… Финансирование наших национальных достижений, имеющих мировое значение, в космосе, в авиации и всего ВПК резко сократилось, а то и вовсе прекратилось. Стартовые сооружения Байконура перешли в собственность Казахстана так же, как и совершивший первый космический полет «Буран» и ракета «Энергия», находившиеся в монтажно-испытательном корпусе. В начале 2001 года над ним рухнула крыша, повредив и «Энергию» и «Буран». А восемь специалистов погибли. В полуразрушенных цехах Тушинского машиностроительного завода находятся в разобранном виде три орбитальных корабля. И самое кощунственное применение «Бурану» — это «работа» аттракционом в Московском парке им. Горького. Созданный для прочностных испытаний экземпляр был потом выставлен на интернет-аукционе за три миллиона долларов. Судьба уникальных космических кораблей, созданных для покорения Вселенной, оказалась печальной. Нелегко сложилась жизнь летчиков-испытателей и космонавтов, прошедших специальную подготовку, отдавших ей столько сил, но так и не прикоснувшихся к штурвалу орбитального корабля. Многих из их отряда нет уже в живых. Погибли при испытаниях новых самолетов Олег Кононенко, Александр Щукин, Римантас Станкявичюс. Нет на свете Анатолия Левченко, Юрия Приходько и Юрия Шефрера. Магомед Толбоев, встречавший «Буран» на самолете МиГ-25, занялся политикой, был депутатом Госдумы. Сейчас он почетный президент Международного авиакосмического салона МАКС в Жуковском. Летчики-испытатели Урал Султанов работает таксистом в Башкирии, Сергей Тресвятский занимается грузовыми перевозками. Лучше идут дела у Виктора Заболотского в НПО им. Хруничева. Он занимается авиационными разработками, кроме того он президент федерации любителей авиации. Игорь Петрович Волк, руководитель отряда космонавтов-испытателей, кандидат в командиры экипажа первого пилотируемого полета на «Буране», уникальный авиаспециалист, летал на всем, что только может летать. Летал он и в космос на корабле «Союз». И сейчас, несмотря на возраст, запрет проходить медкомиссию, летать ему все равно хочется. «Недавно я ездил к конструктору, смастерившему аппарат по типу «три в одном» — лодка, машина и самолет. Хорошо бы попробовать. Жаль, очень жаль, что историческое космическое путешествие «Бурана» стало первым и последним…» Эта тема, имеющая огромный научный и технический потенциал, была свернута и фактически закрыта, хотя официального закрытия ее нет до сих пор. «Буран» — памятник великой стране, разрушенной конверсией, вредными реформами, неразумными политиками».
Date: 2015-09-24; view: 501; Нарушение авторских прав |