Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Векторная алгебра
Лекция 1. Скалярные и векторные величины. Понятие геометрического вектора (направленного отрезка). Нуль-вектор, единичный вектор (орт). Коллинеарные и компланарные векторы. Равенство векторов. Связанные, скользящие, свободные векторы. Линейные операции над векторами, свойства этих операций. Ортогональная проекция векторов на направление. Теоремы о проекциях (доказать самостоятельно). ОЛ-1, пп. 1.1–1.4; ОЛ-3, гл.2 §1, гл.1 §2 п.1. Лекция 2. Линейная комбинация векторов. Линейная зависимость векторов. Критерий линейной зависимости двух и трех векторов, линейная зависимость четырех векторов (доказать самостоятельно). Векторные пространства V1, V2, V3 и базисы в них. Разложение вектора по базису. Координаты вектора. Линейные операции над векторами, заданными своими координатами. Ортонормированный базис. Скалярное произведение векторов, его механический смысл. Вычисление скалярного произведения векторов, заданных своими координатами в ортонормированном базисе. Вычисление длины вектора, косинуса угла между векторами и проекции вектора на направление. Координаты вектора в ортонормированном базисе как проекции этого вектора на направление базисных векторов. Направляющие косинусы вектора. ОЛ-1, пп. 1.5–1.7, 2.2; ОЛ-3, гл. 2, §§1–2, гл. 1, §1, п. 3. Лекция 3. Ориентация базиса, правые и левые тройки векторов. Векторное произведение двух векторов, его механический и геометрический смысл. Свойства векторного произведения (без док-ва). Вычисление векторного произведения в координатной форме в ортонормированном базисе. Смешанное произведение трех векторов и его геометрический смысл. Объем тетраэдра. Свойства смешанного произведения. Вычисление смешанного произведения в ортонормированном базисе. Условие компланарности трех векторов. ОЛ-1, пп. 2.3–2.5; ОЛ-3, гл. 2, §3. Date: 2015-09-23; view: 357; Нарушение авторских прав |