Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Методические указания. Причинно-следственные отношения – это связь явлений и процессов, когда изменение одного из них – причины – ведет к изменению другого – следствия





 

Причинно-следственные отношения – это связь явлений и процессов, когда изменение одного из них – причины – ведет к изменению другого – следствия.

В статистике различают функциональную связь и стохастическую зависимость. Функциональной называют связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака.

Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической. Частным случаем стохастической связи является корреляционная связь, при которой изменении среднего значения результативного признака обусловлено изменением факторных признаков.

По направлению выделяют связь прямую и обратную. При прямой связи с увеличением или уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного. В случае обратной связи значения результативного признака изменяются под воздействие факторного в противоположном направлении по сравнению с изменением факторного признака.

По аналитическому выражению выделяют связи прямолинейные и нелинейные.

Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии – то нелинейной или криволинейной.

Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками.

Теснота связи количественно выражается величиной коэффициентов корреляции.

Теснота связи при линейной зависимости измеряется с помощью линейного коэффициента корреляции:

Линейный коэффициент корреляции изменяется в пределах от -1 до+1.

По степени тесноты связи различают количественные критерии оценки тесноты связи:

Величина коэффициента корреляции Характер связи
До ±0,3 Практически отсутствует
±0,3 – ±0,5 Слабая
±0,5 – ±0,7 Умеренная
±0,7 – ±1,0 Сильная

 

Теснота связи при криволинейной зависимости измеряется с помощью корреляционного отношения. Различают эмпирическое и теоретическое корреляционное отношение.

Эмпирическое корреляционное отношение:

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины обусловлено влиянием одной или нескольких независимых величин (факторов).

По форме зависимости различают:

- линейную регрессию, которая выражается уравнением прямой (линейной функции) вида:

- нелинейную регрессию, которая выражается уравнениями вида:

парабола -

гипербола - и т.д.

По направлению связи различают:

1) прямую регрессию (положительную), возникающую при условии, если с увеличением или уменьшением независимой величины значения зависимой также соответственно увеличиваются или уменьшаются;

2) обратную (отрицательную) регрессию, появляющуюся при условии, что с увеличением или уменьшением независимой величины зависимая соответственно уменьшается или увеличивается.

Парная регрессия характеризует связь между двумя признаками: результативным и факторным.

Оценка параметров уравнения регрессии а0, а1 осуществляется методом наименьших квадратов, в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и нахождении параметров модели, при котором минимизируется сумма квадратов отклонений фактических значений результативного признака от теоретических, полученных по уравнению регрессии:

Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет следующий вид:

где n – объем исследуемой совокупности (число единиц наблюдения).

В уравнениях регрессии параметр а0 показывает усредненное влияние на результативный признак неучтенных факторов; параметр а1 – коэффициент регрессии показывает, на сколько изменяется в среднем значение результативного признака при изменении факторного на единицу его собственного измерения.

Изучение связи между тремя и более связанными между собой признаками носит название множественной (многофакторной) регрессии. При исследовании зависимостей методами множественной регрессии требуется определить аналитическое выражение связи между результативным признаков (Y) и множеством факторных признаков (x1, x2, x3,…xn).


Построение моделей множественной регрессии включает несколько этапов:

· выбор формы связи (уравнения регрессии);

· отбор факторных признаков;

· обеспечение достаточного объема совокупности для получения реальных оценок.

Практика построения многофакторных моделей показывает, что все реально существующие зависимости между социально-экономическими явлениями можно описать, используя пять типов моделей:

· линейная;

· степенная;

· показательная;

· параболическая;

· гиперболическая.

Качество уравнения регрессии зависит от степени достоверности и надежности исходных данных и объема совокупности.

Немаловажное значение имеет процедура отбора факторов в уравнение. Наиболее приемлемым способом отбора факторных признаков является шаговая регрессия. Сущность метода шаговой регрессии заключается в последовательном включении факторов в уравнение регрессии и последующей проверке их значимости.

Если при включении нового фактора в модель, коэффициенты регрессии меняют не только свои значения, но и знаки, а множественный коэффициент корреляции не возрастает, то данный факторный признак признается нецелесообразным для включения в модель связи.

Сложность и взаимно переплетение отдельных факторов, обуславливающих исследуемое экономическое явление, могу проявляться в так называемой мультиколлинеарности. Под мультиколлинеарностью понимается тесная зависимость между факторными признаками, включенными в модель. Одним из индикаторов определения мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0,8.

При наличии линейной связи между результативным и несколькими факторными признака, а также между парой факторных признаков определяется множественный коэффициент корреляции:

Множественный коэффициент корреляции изменяется в пределах от 0 до 1. Чем ближе R к единице свидетельствует о сильной зависимости между признаками.

 

 


Рекомендуемая литература

Рекомендовано Министерством образования РФ

 

1. Громыко Г.Л. Статистика. Практикум. – М.: Инфра-М, 2003.

2. Гусаров В.М. Теория статистики: Учеб. Пособие для ВУЗа. – М.: Аудит, ЮНИТИ, 1998.

3. Ефимова М.Р. Общая теория статистики. – М.: Финансы и статистика, 2001.

4. Ефимова М.Р. Практикум по общей теории статистики. – М.: Финансы и статистика, 2005.

5. Практикум по статистике / Под ред. Симчеры В.М., – М.: Финстатинформ, 1999.

6. Практикум по теории статистики / Под ред. Шмойловой Р.А., – М.: Финансы и статистика, 2004.

7. Сборник задач по общей теории статистики / Под ред. Глинского Н.Н. – М.: Инфра-М, 2002.

8. Статистика / Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2003.

9. Статистика. Курс лекций / Под ред. Ионина И.Г.- М.: Инфра-М, Новосибирск: изд-во НГУ, 2002.

10. Теория статистики / Под ред. Шмойловой Р.А., – М.: Финансы и статистика, 2004.







Date: 2015-09-22; view: 537; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию