Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основы общей экологии

Н.А.Воронков

 

 

(Общеобразовательный курс)

Издание четвертое доработанное и дополненное

Рекомендовано Министерством образования Российской Федера­ции в качестве учебника для студентов высших учебных заведений

Допущено Департаментом общего среднего образования Министер­ства образования Российской Федерации в качестве пособия для учителей

 

«Агар» «Рандеву-АМ»

Москва 1999

ББК20Я73

Воронков Н.А.

Основы общей экологии: Учебник для студентов высших учебных заве­дений. Пособие для учителей. - М.: Агар, 1999. - 96 с.

 

В соответствии с вновь вводимыми стандартами высшего образования, эколо­гию должны изучать студенты всех специальностей в блоке общекультурных дис­циплин. Настоящий учебник ставит целью оказать помощь в решении данной весьма актуальной задачи экологического всеобуча. В нем в доступной форме, при максимально возможном сохранении научного уровня, рассматриваются ос­новные вопросы современной экологии. Учебник является результатом обобще­ния опыта длительной научной работы автора в области экологии и преподавания данной дисциплины студентам всех специальностей (факультетов) Московского государственного открытого педагогического университета.

Предлагаемая читателю первая часть учебника посвящена наиболее значимым вопросам общей, или классической экологии, рассматривающей основные законо­мерности функционирования природных систем различного ранга (от биосферы до элементарных экосистем и популяций), их устойчивость, энергетику, продук­тивность, роль в сохранении жизни и другие свойства.

Во второй части (издается в 1999 году) освещаются проблемы социальной, прикладной и других разделов экологии, связанных с деятельностью человека.

Кроме использования студентами и учителями, будет полезен слушателям уни­верситетов повышения квалификации, учащимся старших классов школ, а также всем лицам, интересующимся вопросами экологии и экологического образования.

 

Автор: Воронков Н. А.

Рецензенты:

Академик Российской академии образования, д.б.н. И.Д.Зверев.

Проректор Московского института повышения квалификации работни­ков образования, действительный член Международной академии наук, профессор, доктор физико-математических наук Ю.Л.Хотунцев.

Кафедра зоологии и экологии МПГУ, доктор биологических наук, про­фессор Н.М.Чернова.

ISBN 5-89218-098-0 ISBN 5-93290-008-3

© Издательство «Агар», 1999

© Н.А.Воронков

 

 

СЛОВО К ЧИТАТЕЛЮ! (вместо предисловия)

Автор учебника, который Вам предлагается, стремится позна­комить Вас с началами экологии как науки, пробудить интерес к этой весьма актуальной и интересной отрасли знаний.

В предлагаемой первой части учебника ставится цель показать, по каким закономерностям природа формировалась миллиарды лет и существовала без участия человека; утвердить Вас в мысли, что среда, в которой человек обитает, создана прежде всего живыми организмами и продуктами их жизнедеятельности, и что сбережение этой среды возможно только при непре­менном условии сохранения всего разнообразия жизни. Из этого следует, что любые попытки человека и человечества ре­шить свои проблемы существования и выживания в одиночку (без сохранения всего разнообразия жизни), даже самыми современны­ми техническими средствами, однозначно не состоятельны.

Современная среда обитания и свойственная ей жизнь на Земле порождены живыми организмами многих геологических эпох, они же являются и условием продолжения жизни. Неверен даже са­мый гуманный тезис, провозглашенный человеком: все окружаю­щие существа - братья наши меньшие. Человек в существующем мире - самый младший брат, хотя и щедро наделенный старшими братьями разумом и невиданной силой. Свой разум и силу человек должен использовать не для того, чтобы больше взять у старших братьев, а также из их кладовых, наполнявшихся миллиарды лет, а для осознания того факта, что старшие братья существовали мил­лионы лет без младшего и могут продолжать существование без него. Младший же без старших не проживет и нескольких дней. Поэтому силу и ум, дарованные ему старшими братьями, он ни в коем случае не должен использовать во вред им, часто немощным и беззащитным перед мощью человека, а в помощь, хотя бы для того, чтобы вернуть долги, залечить раны, искупить свою вину и не повторять ошибок.

Тезис «меньших братьев» неверен и потому, что предполагает учение их уму-разуму. На самом же деле человек должен, наконец, осознать, что ему, и прежде всего ему, есть чему учиться у братьев старших, если не у каждого в отдельности, то уж у коллективно­го разума - обязательно!

Вторая часть пособия («Социальная и прикладная экология») по­священа рассмотрению тех проблем, которые человек создал мгно­вениями своей жизни в том мире, который многие миллионы и мил­лиарды лет жил по своим нормам и правилам; каковы масштабы его деятельности и к чему надо стремиться, чтобы стать равным среди равных и не разрушить наш общий дом. К сожалению, пока далеко не все ясно, что конкретно надо делать для исправления сложившейся и усугубляющейся с каждым днем весьма тревож­ной ситуации. Однако известно, что поиск выхода возможен только совместными усилиями всех и каждого на основе познания себя и мира, в котором мы живем, и прежде всего глубоких экологических знаний. Незнание и равнодушие - дорога в пропасть!

Если этот учебник вызовет у Вас интерес к науке и учебной дис­циплине, имя которой «Экология», а знакомство с ее проблемами хоть в какой-то мере заставит Вас задуматься о своем месте и роли в окружающем мире, автор будет глубоко удовлетворен и с благодарностью примет и учтет в дальнейшей работе все Ваши замечания и пожелания, которые можно направлять по адресу: 109004 Москва, ул. Верхняя Радищевская, 18, МГОПУ, биолого-хи­мический факультет. По этому же адресу можно приобрести книгу.

ВВЕДЕНИЕ

Существует образное выражение, что мы живем в эпоху трех «Э»: экономика, энергетика, экология. При этом экология как наука и образ мышления привлекает все более и более пристальное вни­мание человечества.

Экологию рассматривают как науку и учебную дисципли­ну, которая призвана изучать взаимоотношения организмов и среды во всем их разнообразии. При этом под средой по­нимается не только мир неживой природы, а и воздействие одних организмов или их сообществ на другие организмы и сообщества.

Термин «экология» был введен в употребление немецким есте­ствоиспытателем Э. Геккелем в 1866 году и в дословном переводе с греческого обозначает науку о доме (ойкос - дом, жилище; логос - учение).

По этой причине экологию иногда связывают только с учением о среде обитания (доме) или окружающей среде. Последнее в осно­ве правильно с той, однако, существенной поправкой, что среду нельзя рассматривать в отрыве от организмов, как и организмы вне их среды обитания. Это составные части единого функциональ­ного целого, что и подчеркивается приведенным выше определе­нием экологии как науки о взаимоотношениях организмов и среды.

Такую двустороннюю связь важно подчеркнуть в связи с тем, что это основополагающее положение часто не доучитывается: экологию сводят только к влиянию среды на организмы. Ошибоч­ность таких положений очевидна, поскольку, как будет показано ниже, именно организмы сформировали современную среду. Им же принадлежит первостепенная роль в нейтрализации тех воздействий на среду, которые происходили и происхо­дят по различным причинам.

Концептуальные основы дисциплины. С момента появле­ния «Экология» развивалась в рамках биологии практически на про­тяжении целого века - до 60-70-х годов настоящего столетия. Че­ловек в этих системах, как правило, не рассматривался - полага­лось, что его взаимоотношения со средой подчиняются не биоло­гическим, а социальным закономерностям и являются объектом общественно-философских наук.

В настоящее время термин «экология» существенно трансформиро­вался. Она стала больше ориентированной на человека в связи с его исключительно масштабным и специфическим влиянием на среду.

Сказанное позволяет дополнить определение «экологии» и назвать задачи, которые она призвана решать в настоящее время. Совре­менную экологию можно рассматривать как науку, занимаю­щуюся изучением взаимоотношений организмов, в том чис­ле и человека, со средой, определением масштабов и допус­тимых пределов воздействия человеческого общества на среду, возможностей уменьшения этих воздействий или их полной нейтрализации. В стратегическом плане - это наука о выживании человечества и выходе из экологического кри­зиса, который приобрел (или приобретает) глобальные мас­штабы - в пределах всей планеты Земля.

Становится все более ясным, что человек очень мало знает о сре­де, в которой он живет, особенно о механизмах, которые формируют и сохраняют среду. Раскрытие этих механизмов (закономерностей) -одна из важнейших задач современной экологии и экологического об­разования. Ясно, что она может решаться лишь при условии изучения не только «Дома», но и его обитателей, их образа жизни.

Содержание термина «экология», таким образом, приобрело социально-политический, философский аспект. Она стала проникать практически во все отрасли знаний, с ней связывается гуманизация естественных и технических наук, она активно внедряется в гуманитарные области зна­ний. Экология при этом рассматривается не только как самостоятель­ная дисциплина, а как мировоззрение, призванное пронизывать все на­уки, технологические процессы и сферы деятельности людей.

Признано поэтому, что экологическая подготовка должна идти, по крайней мере, по двум направлениям через изучение специаль­ных интегральных курсов и через экологизацию всей научной, про­изводственной и педагогической деятельности.

Решению этих крайне актуальных вопросов и призван помочь пред­лагаемый курс. Как отмечено в аннотации, основной целью его явля­ется изложение тех основ экологии, с которыми должен быть знаком каждый обучающийся вне зависимости от его специальности. Сказан­ное не исключает, а полагает, что вопросы, ориентированные на конк­ретные отрасли знаний, должны рассматриваться в специальных эколо­гических курсах. Ясно, что без основательной общеэкологической под­готовки экологизация образования, как и деятельности человека, прак­тически невозможна, а если она и проводится - то либо не достигает цели, либо имеет результат, противоположный ожидаемому, так как ба­зируется на случайных, часто фрагментарных положениях, что недопу­стимо для системной науки, к рангу которой относится «Экология».

Наряду с экологическим образованием существенное внимание уделяется экологическому воспитанию, с которым связывается бережное отношение к природе, культурному наследию, социальным благам. Без серьезного общеэкологического образования решение этой задачи также весьма проблематично.

Между тем, став в своем роде модной, экология не избежала вульгаризации понимания и содержания. В ряде случаев экология становится разменной монетой в достижении определенных поли­тических целей, положения в обществе.

В разряд экологических нередко возводятся вопросы, относящи­еся к отраслям производства, видам и результатам деятельности человека, просто если к ним добавляют модное слово «экология». Так появляются несуразные выражения, в том числе и в печати, типа «хорошая и плохая экология», «чистая и грязная экология», «ис­порченная экология» и др. Это равнозначно присвоению таких же эпитетов математике, физике, истории, педагогике и т. п.

По этому же принципу ранг экологии присваивается многим раз­делам гуманитарных (философии, социологии, экономики) и есте­ственных наук (биологии, естествознания, географии).

Несмотря на отмеченные неясности и издержки в понимании объ­ема, содержания и использования термина «экология», несомненным остается факт ее крайней актуальности в настоящее время.

Предлагаемая первая часть учебника («Общая экология») является теоретической базой второй («Социальная и прикладная экология»), кото­рая, в свою очередь, является логическим продолжением первой. В та­ком случае более частные вопросы рассматриваются в ранге отдельных проблем названных выше двух крупных разделов (частей). Так, напри­мер, во второй части пособия рассматриваются экологические проблемы (но не «экологии») промышленности, земельных ресурсов, продовольствия, водных ресурсов, городов, энергетики, народонаселения, состояния сре­ды и здоровья и др.

В обобщенном виде «Общая экология» изучает наиболее об­щие закономерности взаимоотношений организмов и их сообществ со средой в естественных условиях.

«Социальная экология» рассматривает взаимоотношения в си­стеме «общество - природа», специфическую роль человека в си­стемах различного ранга, отличие этой роли от других живых су­ществ, пути оптимизации взаимоотношений человека со средой, теоретические основы рационального природопользования.

«Прикладная экология» призвана решать конкретные вопро­сы природопользования, определять допустимые нагрузки на сре­ду, разрабатывать методы управления природными системами (эко­системами) и способы «экологизации» различных видов деятель­ности человека.

С точки зрения основного содержания предмета «Общая эколо­гия» есть не что иное, как экология природных систем и уче­ние о природной среде, а «Социальная и прикладная эколо­гия» - экология измененных человеком природных систем и среды, или экология природно-антропогенных систем и уче­ние о природно-антропогенной (иногда техногенной) среде.

Краткий исторический очерк. Общеэкологические подходы к рассмотрению и оценке природных явлений имеют длительную исто­рию. По сути своей в значительной мере экологичными были труды первых ученых-естествоиспытателей, искавших зависимости между свойствами живых существ и условиями обитания: Аристотель (384-322 г. до н. э.), его ученик-ботаник Теофраст (371-280 г. до н. э.). Много ценных материалов поставили исследователи-натуралисты, за­нимавшиеся описанием и систематизацией растений и животных.

Особо следует выделить труд Ч. Дарвина «Происхождение ви­дов» (1859), в котором большое внимание уделяется приспособлени­ям (адаптациям) и взаимоотношениям организмов. Э. Геккель, вво­дя термин «экология», отмечал, что одной из задач данной науки яв­ляется исследование всех тех взаимоотношений организмов, кото­рые Ч. Дарвин условно обозначил как борьбу за существование.

Из отечественных ученых наиболее существенный вклад в раз­витие отдельных разделов общей экологии и прежде всего систем­ный взгляд на природные явления внесли исследования почвоведа-географа В. В. Докучаева (1846-1903) и его школы (Г. Ф. Морозов, Г. Н. Высоцкий, В. И. Вернадский и др.). В. В. Докучаев показал тесную взаимосвязь живых организмов и неживой природы на при­мере почвообразования и выделения природных зон. Г. Ф. Морозов (1867-1920) раскрыл всесторонние связи в лесных сообществах и рассмотрел их как единые системы, включающие весь свойствен­ный им комплекс живых организмов и условий обитания, их средообразовательную роль. В этом же направлении, но применительно к решению конкретных вопросов степного лесоразделения, проводил свои исследования ботаник, почвовед, географ Г.Н.Высоцкий (1865-1940).

В. И. Вернадский (1863-1945) системный подход применил к рас­крытию основополагающих геологических явлений и их эволюции, показал определяющую роль живых организмов и продуктов их жиз­недеятельности в этих явлениях, стал автором учения о биосфере и закономерностях ее существования, устойчивости и развития.

Оригинальны и интересны исследования В. Н. Сукачева (1880-1967), посвятившего многие годы комплексному изучению лесных систем (сообществ), результатом чего явилось всесторон­нее рассмотрение единства и взаимообусловленности природных явлений, живой и неживой материи. Им в 1942 г. введен в науку термин «биогеоценоз», раскрыто его содержание.

Несколько раньше (в 1935 г.) подобные идеи сформулировал ан­глийский ботаник-эколог А. Тенсли и ввел в науку термин «экосис­тема», дал его определение. В настоящее время эти понятия явля­ются определяющими для экологии как науки.

В числе других ученых, которые либо развивали, либо обогаща­ли различные аспекты общей экологии как науки (многие из них являются авторами учебников и учебных пособий), следует назвать Д. Н. Кашкарова, Ч. Элтона, Н. П. Наумова, С. С. Шварца, М. С. Гилярова - труды по вопросам экологии животных; А. П. Шенникова, Ф. Клементса, В. Лархера и др. - комплекс работ по эколо­гии растений; Г. Одума, Ю. Одума, Р. Уиттекера, Р. Риклефса, М. Бигона и др., Р. Дажо, Н. М. Чернову, А. М. Былову, В. А. Радкевича, И. Н. Пономареву, И. А. Шилова и др. - учебники и учеб­ные пособия по проблемам общей экологии.

Одно из первых высказываний, относящихся к сфере социальной экологии, принадлежит французскому естествоиспытателю-эволю­ционисту Жану-Батисту Ламарку (1744-1829). Он, наряду с рас­крытием ряда закономерностей влияния среды на организмы, впер­вые обратил серьезное внимание на специфическую роль человека и ее возможные катастрофические последствия. Он писал: «Мож­но, пожалуй, сказать, что назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания». Это высказывание перекликает­ся с «Пророчествами» Леонардо да Винчи (1452-1519), предрекавшего появление существ, результаты деятельности которых «... ничего не оставят ни на земле, ни под водой, что не было бы преследуемо и не подвергалось искоренению...».

Различные аспекты экологии и смежных с ней дисциплин содер­жатся в трудах и учебниках М. И. Будыко, Н. Н. Моисеева, Н.Ф. Реймерса, А. В. Яблокова, Б. Г. Розанова, Б. Коммонера, а также в переведенных в последнее время на русский язык обстоятельных сводках по вопросам различных проблем экологии Б. Небела, Т. Миллера, П. Ревелля, Ч. Ревелля, Л. Р. Брауна и других авторов. Следует также обратить внимание на оригинальный труд «Пробле­мы экологии России», авторами которого являются К. С. Лосев, В. Г. Горшков, К. Я. Кондратьев и другие ученые.

В целом основная задача курса сводится к формированию об­щих основ системного взгляда на природные и техногенные про­цессы как базы для оптимизации деятельности и поведения чело­века в окружающем мире с целью поиска путей относительно ста­бильного, а в дальнейшем и устойчивого развития общества, к чему призвала Конференция ООН по окружающей среде и развитию, состоявшаяся в Рио-де-Жанейро в 1992 году.

На первый взгляд, казалось бы, возможно при знакомстве с эко­логией как дисциплиной ограничиться ее прикладными аспектами и прежде всего мероприятиями по оздоровлению среды, которые сводятся в конечном счете к определенной системе технологичес­ких требований, административных запретов и санкций. Однако та­кой подход недостаточен и односторонен, поскольку не позволяет видеть глубинные причины сложившейся экологической ситуации и тем более обоснованно прогнозировать возможные и часто труд-нопредсказуемые последствия планируемых или осуществляемых действий, в том числе и с самыми благими намерениями. Поэтому крайне важно рассмотреть основные положения общей экологии, которая, как отмечалось, является теоретической основой для ре­шения проблем рационального природопользования и охраны при­роды, базовой для социальной и прикладной экологии, а также для других, более частных экологических дисциплин.

I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ

I.1. Основные понятия

Основным понятием и основной таксономической единицей в эко­логии является «экосистема». Этот термин, как упоминалось выше, введен в употребление А. Тенсли в 1935 г., т. е. более полувека спу­стя после выделения экологии как отрасли научных знаний (1866).

Под экосистемой понимается любая система, состоящая из живых существ и среды их обитания, объединенных в еди­ное функциональное целое. Основные свойства экосистем -способность осуществлять круговорот веществ, противосто­ять внешним воздействиям, производить биологическую продукцию. Выделяют обычно экосистемы различного ранга: от микроэкосистем (небольшой водоем, труп животного с населяю­щими его организмами или ствол дерева в стадии разложения, ак­вариум и даже лужица или капля воды, пока они существуют и в них присутствуют живые организмы, способные осуществлять кру­говорот веществ); мезоэкосистемы (лес, пруд, река и т.п.); макро­экосистемы (океан, континент, природная зона и т. п.) и глобальная экосистема - биосфера в целом.

Таким образом, более крупные экосистемы включают в себя экосистемы меньшего ранга. Образное (шутливое) определение экосистемы дал географ и писатель Г. К. Ефремов: это любое при­родное образование - «от кочки до оболочки» (географической).

Близкий по содержанию смысл вкладывается в термин «биогеоценоз», введенный в литературу академиком В. Н. Сукаче­вым несколько позднее, чем «экосистема» - в 1942 г.

Небольшие различия, которые свойственны этим терминам бу­дут рассмотрены в разд. IV. 1 (часть I).

Экосистемы (биогеоценозы) обычно включают два блока. Пер­вый из них состоит из взаимосвязанных организмов разных видов и носит название «биоценоз» (термин введен немецким зоологом К. Мебиусом в 1877 г.), второй блок составляет среда обитания, которую в данном случае называют «биотоп» или «экотоп».

Каждый биоценоз состоит из множества видов, но виды входят в него не отдельными особями, а популяциями или их частями. Популяция - это относительно обособленная часть вида (состоит из осо­бей одного вида), занимающая определенное пространство и способ­ная к саморегулированию и поддерживанию оптимальной численнос­ти особей. Каждый вид в пределах занимаемой территории (ареала), таким образом, распадается на популяции. Размеры их различны. В таком случае можно сказать, что биоценоз - это сумма взаимосвя­занных между собой и с условиями среды популяций разных видов.

В экологии часто пользуются также термином «сообщество». Содержание этого термина неоднозначно. Под ним понимается и совокупность взаимосвязанных организмов разных видов (синоним биоценоза), и аналогичная совокупность только растительных (фи­тоценоз, растительное сообщество), животных (зооценоз) организ­мов или микробного населения (микробоценоз).

Системность экологии. Экология как наука рассматривает си­стемы, звенья и члены которых находятся в тесной взаимосвязи и взаимозависимости. Из этого вытекает необходимость учета мно­жества факторов при анализе тех или иных экологических явлений и тем более при планировании любых вмешательств в экосисте­мы. Такой подход, в свою очередь, невозможен без комплексного метода изучения, оценки и решения тех или иных экологических задач. По этим же причинам очевидна тесная связь экологии с дру­гими науками, сведениями из которых необходимо не только распо­лагать, но и уметь их грамотно использовать. К таким наукам от­носятся: биология, география, почвоведение, гидрология, химия, физика и другие отрасли знаний. Важно также уметь пользоваться необходимой информацией из различных отраслей хозяйства и свой­ственных им технологических процессов.

Говоря о системных явлениях, важно познакомиться с видами систем, общими положениями теории систем. Обычно различают три вида систем: 1) изолированные, которые не обмениваются с соседними ни веществом, ни энергией, 2) закрытые, которые об­мениваются с соседними энергией, но не веществом (например, космический корабль), и 3) открытые, которые обмениваются с соседними и веществом, и энергией. Практически все природные (экологические) системы относятся к типу открытых.

Существование систем немыслимо без связей. Последние де­лят на прямые и обратные. Прямой называют такую связь, при которой один элемент (А) действует на другой (В) без ответной реакции. Примером такой связи может быть действие древесного яруса леса на случайно выросшее под его пологом травянистое растение или действие солнца на земные процессы. При обратной связи элемент В отвечает на действие элемента А. Обратные свя­зи бывают положительными и отрицательными. И те и другие играют существенную роль в экологических процессах и явлениях.

Положительная обратная связь ведет к усилению процесса в одном направлении. Пример ее - заболачивание территории, на­пример, после вырубки леса. Снятие лесного полога и уплотнение почвы обычно ведет к накоплению воды на ее поверхности. Это, в свою очередь, дает возможность поселяться здесь растениям-влагонакопителям, например сфагновым мхам, содержание воды в которых в 25-30 раз превышает вес их тела. Процесс начинает дей­ствовать в одном направлении: увеличение увлажнения - обедне­ние кислородом - замедление разложения растительных остатков - накопление торфа - дальнейшее усиление заболачивания.

Отрицательная обратная связь действует таким образом, что в ответ на усиление действия элемента А увеличивается противо­положная по направлению сила действия элемента В. Такая связь позволяет сохраняться системе в состоянии устойчивого динами­ческого равновесия. Это наиболее распространенный и важный вид связей в природных системах. На них прежде всего базируется устойчивость и стабильность экосистем. Пример такой связи - вза­имоотношение между хищником и его жертвой. Увеличение чис­ленности жертвы как кормового ресурса, например полевых мы­шей для лис, создает условия для размножения и увеличения чис­ленности последних. Они, в свою очередь, начинают более интен­сивно уничтожать жертву и снижают ее численность. В целом чис­ленность хищника и жертвы синхронно колеблется в определенных границах. Второй пример. В истории биосферы имели место явле­ния локального увеличения содержания углекислого газа в ат­мосфере, например, при извержении вулканов. За этим следовало повышение интенсивности фотосинтеза и связывание углекислоты в органическом веществе, а также более интенсивное поглощение ее океаном. Третий пример. В природе закономерны периодичес­кие повышения уровней почвенно-грунтовых вод. За этим следует увеличение их контакта с корневыми системами растений, повы­шение расходования на испарение растительностью (транспирацию) и возвращение уровней грунтовой воды в исходное состояние.

Одно из отрицательных проявлений деятельности человека в природе связано с нарушением этих связей, что может привести к разрушению экосистем или переходу их в другое состояние. На­пример, умеренное загрязнение водной среды органическими и био­генными (необходимыми для жизнедеятельности организмов) ве­ществами обычно сопровождается интенсификацией деятельнос­ти организмов, потребляющих эти вещества, результатом чего яв­ляется самоочищение водоемов. Перегрузка же среды загрязняю­щими веществами на определенном этапе ведет к угнетению или уничтожению организмов-санитаров, переводу установившихся обратных связей в прямые, переходу системы на другой уровень. В результате неизбежным становится прогрессирующее загрязне­ние, обеднение водной среды кислородом и превращение чистых озерных или текущих вод в системы болотного типа.

Универсальное свойство экосистем - их эмерджентность (англ. эмердженс - возникновение, появление нового), заключающееся в том, что свойства системы как целого не являются простой сум­мой свойств слагающих ее частей или элементов. Например, одно дерево, как и редкий древостой, не составляет леса, поскольку не создает определенной среды (почвенной, гидрологической, метео­рологической и т. д.) и свойственных лесу взаимосвязей различных звеньев, обусловливающих новое качество. Недоучет эмерджент-ности может приводить к крупным просчетам при вмешательстве человека в жизнь экосистем или при конструировании систем для выполнения определенных целей. Например, сельскохозяйственные поля (агроценозы) имеют низкий коэффициент эмерджентности и поэтому характеризуются крайне низкой способностью саморегу­лирования и устойчивости. В них, вследствие бедности видового состава организмов, крайне незначительны взаимосвязи, велика вероятность интенсивного размножения отдельных нежелательных видов (сорняков, вредителей).

Энергетические процессы в экосистемах подчиняются пер­вому и второму началам термодинамики. В соответствии с ними энергия не возникает и не исчезает, она лишь переходит из одной формы в другую (первое начало термодинамики). При этом часть энергии при любых ее превращениях рассеивается (теряется) в виде тепла (второе начало термодинамики). Мерой необратимого рассе­ивания энергии является энтропия (греч. эн - внутрь, тропе - пре­вращение). Последнюю можно характеризовать и через степень упо­рядоченности системы. Так, живые организмы и нормально функци­онирующие экосистемы характеризуются высокой степенью упоря­доченности слагающих их элементов. Они сохраняют (поддержива­ют) определенный уровень энергии и тем самым противостоят энт­ропии. Мертвый организм характеризуется максимальной неупоря­доченностью элементов (структур), в результате чего приходит в равновесие с окружающей его средой (температура его тела вырав­нивается с температурой среды, составляющие его химические эле­менты и соединения включаются в процессы круговорота и стано­вятся частью среды). Это значит, что организм как система прихо­дит в состояние полной неупорядоченности, максимальной энтропии. Показатель, противоположный энтропии, носит название негэнтропии. Чем выше организованность системы (упорядоченность), тем значительнее ее негэнтропия. Опасно любое вмешательство в сис­тему, которое ведет к снижению ее негэнтропии, а следовательно, устойчивости и способности противостоять внешним возмущениям.

Основным свойством нормально функционирующих природных экосистем является способность извлекать негэнтропию из внешней среды (солнечную энергию) и тем самым поддержи­вать свою высокую упорядоченность.

Деятельность человека, если она превышает определенные пре­делы, ведет к снижению негэнтропии систем, а следовательно, уменьшает их способность поддерживать себя в устойчивом со­стоянии вплоть до перехода к полной неупорядоченности (макси­мальной энтропии) и гибели.

Видный американский эколог Б. Коммонер сделал удачную попыт­ку обобщить системность экологии как науки в виде четырех законов. Эти законы в основе своей не новы, но впервые сформулированы в образной простой форме. Их соблюдение - обязательное условие лю­бой экологически обусловленной деятельности человека в природе.

Первый закон Коммонера отражает по сути своей всеобщую связь процессов и явлений в природе и звучит так: «Все связано со всем». Второй закон базируется на положении сохранения вещества и энер­гии: «Все должно куда-то деваться». Какой бы ни была высокой труба завода, она не может выбрасывать отходы производства за пре­делы биосферы. В такой же мере загрязнители, попадающие в реки, в конечном счете оказываются в морях и океанах и с их продуктами возвращаются к человеку в виде своего рода «экологического буме­ранга». Третий закон ориентирует на действия, согласующиеся с при­родными процессами, сотрудничество с природой, или коадаптацию (лат. ко - с, вместе; адаптацио - приспособление), вместо покорения человеком природы, подчинения ее своим целям: «Природа знает лучше». Сущность четвертого закона заключается в ориентации че­ловека на то, что любое его действие в природе не остается бесслед­ным, мнимая выгода часто оборачивается ущербом, а охрана приро­ды и рациональное использование природных ресурсов немыслимы без определенных экономических затрат. Звучит этот закон так: «Ничто не дается даром». Дешевому природопользованию не должно быть места. Если не заплатим за него мы, то в многократном размере это должны будут сделать пришедшие нам на смену поколения.

Другие термины и понятия, а также закономерности (правила, прин­ципы) экологии, важные для решения социальных и прикладных ее за­дач, будут рассмотрены во второй части работы (см.разд.1.2 и 1.3).

I.2. Структура общей экологии

В «Общей экологии» обычно выделяют несколько взаимосвя­занных разделов, которые иногда рассматривают как отдель­ные дисциплины (табл. 1). Это: учение о факторах среды и за­кономерностях их действия на организмы (факториальная эко­логия); экология на уровне взаимоотношения отдельных орга­низмов и среды (экология организмов, или аутэкология); эколо­гия взаимосвязанных и относительно обособленных групп орга­низмов одних и тех же видов (популяционная, или демографи­ческая, экология), экология взаимосвязанных популяций различ­ных видов между собой (учение о биоценозах). Если биоценозы рассматриваются во взаимосвязи со средой обитания (как еди­ная система), то этот раздел выделяется в учение об экосисте­мах или биогеоценозах. Основополагающим и высшим рангом экологии является учение о биосфере как наиболее крупной (гло­бальной) экосистеме.

Таблица 1

Структура «Общей экологии»

В настоящем общеобразовательном курсе мы познакомимся с теми основными положениями «Общей экологии», которые состав­ляют базу для понимания наиболее существенных моментов функ­ционирования разных природных экосистем и биосферы в целом, раскрывают роль живых организмов (живого вещества, по В. И. Вернадскому) в создании, сохранении и стабилизации при­родной среды; рассматривают механизмы, обусловливающие ус­тойчивость природных систем различного ранга, и другие осново­полагающие проблемы. На этом фоне существенно увеличивается возможность научно обоснованного решения конкретных вопросов прикладной и других разделов экологии, ориентированных на чело­века, а также осуществление основного требования экологизации природопользования и других видов деятельности человека: «мыс­лить глобально, действовать локально».

Вопросы и задания

1. Дайте определение экологии как науки. Назовите автора термина.

2. Как трансформировать содержание и задачи экологии в совре­менный период?

3. Какие вопросы и проблемы рассматривает «Общая экология»? Назовите основные ее разделы.

4. Какие вопросы и проблемы являются предметом изучения «Социальной и прикладной экологии»?

5. Почему экологию относят к системным наукам? Назовите основные виды систем и присущие им связи.

6. Дайте определение понятий (терминов) экологии: «экосисте­ма», «биоценоз», «сообщество», «популяция». К какому виду сис­тем относится «экосистема» и почему? Какие для нее присущи связи? Приведите примеры.

7. Раскройте содержание понятий «эмерджентность», «энтропия», «негэнтропия».

8. Назовите экологические законы Б. Коммонера. Раскройте их содержание.

II. СРЕДА ОБИТАНИЯ. ФАКТОРЫ СРЕДЫ И АДАПТАЦИИ К НИМ ОРГАНИЗМОВ. СРЕДЫ ЖИЗНИ

II.1. Среда и факторы среды, их классификация

Под средой обитания обычно понимают природные тела и яв­ления, с которыми организм (организмы) находятся в прямых или косвенных взаимоотношениях. Отдельные элементы среды, на ко­торые организмы реагируют приспособительными реакциями (адап-тациями), носят название факторов.

Наряду с термином «среда обитания» используются также по­нятия «экологическая среда», «местообитание», «окружающая среда», «окружающая природная среда», «окружающая приро­да» и др. Четких различий между этими терминами нет, но на некоторых из них следует остановиться. В частности, под попу­лярным в последнее время термином «окружающая среда» по­нимается, как правило, среда, в той или иной (в большинстве случаев в значительной) мере измененная человеком. К ней близ­ки по смыслу «техногенная среда», «антропогенная среда», «про­мышленная среда».

Природная среда, окружающая природа - это среда, не изменен­ная человеком или измененная в малой степени. С термином «ме­стообитание» обычно связывается та среда жизни организма или вида, в которой осуществляется весь цикл его развития.

В «Общей экологии» речь обычно идет о природной среде, окру­жающей природе, местообитаниях; в «Прикладной и социальной эко­логии» - об окружающей среде. Этот термин часто считают не­удачным переводом с английского environment, поскольку отсут­ствует указание на объект, который окружает среда.

Влияние среды на организмы обычно оценивают через отдель­ные факторы (лат. делающий, производящий). Под экологичес­кими факторами понимается любой элемент или условие среды, на которые организмы реагируют приспособительными реакция­ми, или адаптациями. За пределами приспособительных реакций лежат летальные (гибельные для организмов) значения факторов.

Классификация факторов:

Чаще всего факторы делят на три группы.

1. Факторы неживой природы (абиотические, или физико-хими­ческие). К ним относятся климатические, атмосферные, почвен­ные (эдафические), геоморфологические (орографические), гидро­логические и другие.

2. Факторы живой природы (биотические) - влияние одних орга­низмов или их сообществ на другие. Эти влияния могут быть со стороны растений (фитогенные), животных (зоогенные), микроор­ганизмов, грибов и т. п.

3. Факторы человеческой деятельности (антропогенные). В их чис­ле различают прямое влияние на организмы (например, промысел) и косвенное - влияние на местообитание (например, загрязнение среды, уничтожение кормовых угодий, строительство плотин на реках и т. п.).

Современные экологические проблемы и возрастающий интерес к экологии связан с действием антропогенных факторов.

Интересна классификация факторов по периодичности и направлен­ности действия, степени адаптации к ним организмов. В этом отноше­нии выделяют факторы, действующие строго периодически (сме­ны времени суток, сезонов года, приливно-отливные явления и т. п.), действующие без строгой периодичности, но повторяющиеся вре­мя от времени. Сюда относятся погодные явления, наводнения, урага­ны, землетрясения и т. п. Следующая группа - факторы направ­ленного действия, они обычно изменяются в одном направлении (потепление или похолодание климата, зарастание водоемов, забола­чивание территорий и т. п.). И последняя группа - факторы неопре­деленного действия. Сюда относятся антропогенные факторы, наи­более опасные для организмов и их сообществ.

Из перечисленных групп факторов организмы легче всего адап­тируются или адаптированы к тем, которые четко изменяются (строго периодические, направленные). Адаптационность к ним такова, что часто становится наследственно обусловленной. И если фактор меняет периодичность, то организм продолжает в течение некоторого времени сохранять адаптации к нему, т. е. действовать в ритме так называемых «биологических часов». Такое явление, в частности, имеет место при смене часовых поясов.

Некоторые трудности характерны для адаптации к нерегулярно-пе­риодическим факторам, но организмы нередко имеют механизмы пред­чувствия их возможности (землетрясения, ураганы, наводнения и т. п.) и в какой-то мере могут смягчать их отрицательные последствия.

Наибольшие трудности для адаптации представляют факторы, при­рода которых неопределенна, к ним организм, как правило, не готов, вид не встречался с такими явлениями и в процессе эволюции. Сюда, как отмечалось, относится группа антропогенных факторов. В этом их ос­новная специфика и антиэкологичность. Многие из этих факто­ров, кроме того, выступают как вредные. Их относят к группе ксенобиотиков (греч. ксенокс - чужой). К последним относятся практичес­ки все загрязняющие вещества. В числе быстроизменяющихся факто­ров большое беспокойство в настоящее время вызывают изменение климата, обусловливаемое так называемым «тепличным, или парнико­вым, эффектом», изменение водных экосистем в результате преобразо­вания рек, мелиорации и т. п. Только в отдельных случаях по отношению к таким факторам организмы могут использовать механизмы так на­зываемых преадаптаций, т. е. те адаптации, которые выработа­лись по отношению к другим факторам. Так, например, устойчи­вости растений к загрязнениям воздуха в какой-то мере способствуют те структуры, которые благоприятны для повышения засухоустойчиво­сти: плотные покровные ткани листьев, наличие на них воскового нале­та, опушенности, меньшее количество устьиц и другие структуры, за­медляющие процессы поглощения веществ, а следовательно, и отрав­ление организма. Это необходимо учитывать, в частности, при подборе ассортимента видов для выращивания в районах с высокой промыш­ленной нагрузкой, для озеленения городов, промплощадок и т.п.

II.2. Некоторые общие закономерности действия факторов среды на организмы

В комплексе действия факторов можно выделить некоторые за­кономерности, которые являются в значительной мере универсаль­ными (общими) по отношению к организмам. К таким закономер­ностям относятся правило оптимума, правило взаимодействия фак­торов, правило лимитирующих факторов и некоторые другие.

Правило оптимума. В соответствии с этим правилом для экосистемы, организма или определенной стадии его раз­вития имеется диапазон наиболее благоприятного (опти­мального) значения фактора. За пределами зоны оптимума ле­жат зоны угнетения, переходящие в критические точки, за которыми существование невозможно (рис. 1). К зоне оптимума обычно приурочена максимальная плотность популяции. Зоны оптимума для различных организмов неодинаковы. Для одних они имеют значительный диапазон. Такие организмы относятся к группе эврибионтов (греч. эури - широкий; биос - жизнь). Организмы с узким диапазоном адаптации к факторам называются стенобионтами (греч. стенос - узкий). Важно подчеркнуть, что зоны опти­мума по отношению к различным факторам различаются, и поэто­му организмы полностью проявляют свои потенциальные возмож­ности в том случае, если весь спектр факторов имеет для них оп­тимальные значения.

Диапазон значений факторов (между критическими точками) называют экологической валентностью (см. рис.1). Синонимом термина валентность является толерантность (лат. толеранция - терпение), или пластичность (изменчивость). Эти характеристи­ки зависят в значительной мере от среды, в которой обитают орга­низмы. Если она относительно стабильна по своим свойствам (малы амплитуды колебаний отдельных факторов), в ней больше стено-бионтов (например, в водной среде), если динамична, например, наземно-воздушная - в ней больше шансов на выживание имеют эврибионты.

Зона оптимума и экологи­ческая валентность обычно шире у теплокровных орга­низмов, чем у холоднокров­ных. Надо также иметь в виду, что экологическая ва­лентность для одного и того же вида не остается одина­ковой в различных условиях (например, в северных и южных районах в отдельные периоды жизни и т.п.). Мо­лодые и старческие организ­мы, как правило, требуют более кондиционированных (однородных) условий. Иногда эти требования весь­ма неоднозначны. Напри­мер, по отношению к темпе­ратуре личинки насекомых обычно стенобионтны (стенотермны), в то время как куколки и взрослые особи могут относиться к эврибионтам (эвритермным).

Правило взаимодействия факторов. Сущность его заключа­ется в том, что одни факторы могут усиливать или смягчать силу действия других факторов. Например, избыток тепла мо­жет в какой-то мере смягчаться пониженной влажностью воздуха, недостаток света для фотосинтеза растений - компенсироваться повышенным содержанием углекислого газа в воздухе и т. п. Из этого, однако, не следует, что факторы могут взаимозаменяться. Они не взаимозаменяемы.

Правило лимитирующих факторов. Сущность этого правила заключается в том, что фактор, находящийся в недостатке или избытке (вблизи критических точек) отрицательно влияет на организмы и, кроме того, ограничивает возможность прояв­ления силы действия других факторов, в том числе и нахо­дящихся в оптимуме. Например, если в почве имеются в достат­ке все, кроме одного, необходимые для растения химические эле­менты, то рост и развитие растения будет обусловливаться тем из них, который находится в недостатке. Все другие элементы при этом не проявляют своего действия. Лимитирующие факторы обычно обусловливают границы распространения видов (популяций), их аре­алы. От них зависит продуктивность организмов и сообществ. По­этому крайне важно своевременно выявлять факторы минимально­го и избыточного значения, исключать возможности их проявления (например, для растений - сбалансированным внесением удобрений).

Человек своей деятельностью часто нарушает практически все из перечисленных закономерностей действия факторов. Особенно это относится к лимитирующим факторам (разрушение местообитаний, нарушение режима водного и минерального питания расте­ний и т.п.).

Фотопериодизм. Под фотопериодизмом понимают реакцию организма на длину дня (светлого времени суток). При этом длина светового дня выступает и как условие роста и развития, и как фактор-сигнал для наступления каких-то фаз развития или поведе­ния организмов. Применительно к растениям обычно выделяют орга­низмы короткого и длинного дня. Растения короткого дня суще­ствуют в низких (южных) широтах, где при длинном периоде вегета­ции день остается относительно коротким. Растения длинного дня характерны для высоких (северных) широт, где при коротком вегетационном периоде день длиннее, чем в южных широтах, вплоть до круглосуточного. Перемещение растении из одних широт в другие без учета данного явления обычно заканчивается неудачей: расте­ния ненормально развиваются, не вызревают.

Сигнальное свойство фотопериодизма выражается в том, что растительные и животные организмы обычно реагируют на длину дня своим поведением, физиологическими процес­сами. Например, сокращение продолжительности дня является сиг­налом для подготовки организмов к зиме. Дня растений это повыше­ние концентрации клеточного сока и т. п. Для животных - накопление жиров, смена накожных покровов, подготовка птиц к перелетам и т. п.

Другие факторы обычно в меньшей мере используются как сиг­нал (например, температура), поскольку они изменяются не с такой строгой закономерностью, как фотопериод, и могут провоцировать наступление у организмов каких-то фаз или явлений преждевре­менно или с запозданием. Хотя определенную корректировку в дей­ствие фотопериодизма они вносят.

Адаптации к ритмичности природных явлений. Наряду с длиной дня организмы эволюционно адаптировались к другим видам периодических явлений в природе. Прежде всего это относится к суточной и сезонной ритмике, приливно-отливным явлениям, ритмам, обусловливаемым солнечной активностью, лунными фазами и дру­гими явлениями, повторяющимися со строгой периодичностью. Че­ловек может нарушать эту ритмику через изменение среды, пере­мещением организмов в новые условия и другими действиями.

Ритмичность действия факторов среды, подверженная строгой пе­риодичности, стала физиологически и наследственно обусловленной для многих организмов. Например, к суточной ритмике адаптирована активность многих животных организмов (интенсивность дыхания, частота сердцебиений, деятельность желез внутренней секреции и т п.). Одни организмы очень стойко сохраняют эту ритмику, другие более пластичны. Например, отмечается, что черные крысы более стойки к суточной (или околосуточной) ритмике и поэтому меньше склонны к расселению, держатся в определенных местообитаниях; серые кры­сы более лобильны по ритмике, легче осваивают новые условия и по­этому являются практически космополитами.

Индивидуальны реакции отдельных людей на изменение суточ­ной ритмики. Например, одни лица относительно легко переносят смену часовых поясов, и для их адаптации в новых условиях требу­ется непродолжительное время. Другие - переносят такие смены болезненно и приспосабливаются к ним в течение более длитель­ных периодов. Это явление представляет серьезную проблему с физиологической и медицинской точек зрения. В частности, при решении проблем ночных смен работы, пребывания в космосе, пе­релетах на значительные расстояния и т. п.

Поразительна высокая и разнообразная адаптивность некоторых организмов к подобным природным ритмам. Например, приливно-отливные ритмы морей связаны с солнечными сутками (24 часа), лунными сутками (24 часа 50 минут). Кроме этого, в течение пос­ледних имеют место два прилива и два отлива, которые ежедневно смещаются на 50 минут. Сила приливов изменяется также в тече­ние лунного месяца, равного 29,5 солнечным суткам, а приливы дважды в месяц (при новолунии и полнолунии) достигают макси­мальной величины. Некоторые организмы, обитающие в приливно-отливной зоне (литораль), адаптируются ко всем изменениям вод­ной среды. Например, отдельные рыбы (атерина в Калифорнии) откладывают икринки на границе максимального прилива. К этому же периоду приурочен и выход мальков из икринок.

Многие из ритмов становятся наследственно обусловленными. Например, при перемещении некоторых животных в более север­ные районы они (животные) продолжают сохранять свою ритмику. В таких случаях нарушается правило приуроченности наиболее ответственных периодов в жизни (размножения) к более благопри­ятному времени. Так, австралийские страусы в условиях Аскании Нова (Украина) могут откладывать яйца на снег.

Нет оснований доказывать, что ритмичность деятельности орга­низмов должна учитываться человеком при тех или иных измене­ниях среды и особенно при перемещениях или переселениях орга­низмов, например, при интродукции (перемещении вида в новые условия за пределы его ареала).

II.3. Среды жизни и адаптации к ним организмов

Наряду с понятиями «среда», «местообитание», «природная среда», «окружающая среда» широко используется термин «среда жизни». Все разнообразие условий на Земле объединяют в четыре среды жизни: водную, наземно-воздушную, почвенную и организменную (в последнем случае одни организмы являются средой для других).

Среды жизни выделяются обычно по фактору или комплексу факторов, которые никогда не бывают в недостатке. Эти факторы являются средообразующими и обусловливают свойства сред. Рассмотрим кратко присущие названным средам жизни свойства, лимитирующие факторы и адаптации организмов.

Водная среда. Эта среда наиболее однородна среди других. Она мало изменяется в пространстве, здесь нет четких границ между отдельными экосистемами. Амплитуды значений факторов также невелики. Разница между максимальными и минимальными значениями температуры здесь обычно не превышает 50°С (в наземно-воздушной среде - до 100°С). Среде присуща высокая плот­ность. Для океанических вод она равна 1,3 г/см3, для пресных - близка к единице. Давление изменяется только в зависимости от глубины: каждый 10-метровый слой воды увеличивает давление на 1 атмосферу.

Лимитирующим фактором часто бывает кислород. Содержание его обычно не превышает 1% от объема. При повышении темпе­ратуры, обогащении органическим веществом и слабом переме­шивании содержание кислорода в воде уменьшается. Малая дос­тупность кислорода для организмов связана также с его слабой диффузией (в воде она в тысячи раз меньше, чем в воздухе). Вто­рой лимитирующий фактор - свет. Освещенность быстро умень­шается с глубиной. В идеально чистых водах свет может прони­кать до глубины 50-60 м, в сильно загрязненных - только на не­сколько сантиметров.

В воде мало теплокровных, или гомойотермных (греч. хомой -одинаковый, термо - тепло), организмов. Это результат двух причин: малое колебание температур и недостаток кислорода. Основной адап­тационный механизм гомойотермии - противостояние неблагопри­ятным температурам. В воде такие температуры маловероятны, а в глубинных слоях температура практически постоянна (+4°С). Под­держание постоянной температуры тела обязательно связано с ин­тенсивными процессами обмена веществ, что возможно только при хорошей обеспеченности кислородом. В воде таких условий нет. Теплокровные животные водной среды (киты, тюлени, морские ко­тики и др.) - это бывшие обитатели суши. Их существование невоз­можно без периодической связи с воздушной средой.

Типичные обитатели водной среды имеют переменную темпе­ратуру тела и относятся к группе пойкилотермных (греч. пойкиос - разнообразный). Недостаток кислорода они в какой-то мере компенсируют увеличением соприкосновения органов дыхания с во­дой. Многие обитатели вод (гидробионты) потребляют кислород через все покровы тела. Часто дыхание сочетается с фильтрационным типом питания, при котором через организм пропускается большое количество воды. Некоторые организмы в периоды ост­рого недостатка кислорода способны резко замедлять жизнедея­тельность, вплоть до состояния анабиоза (почти полное прекраще­ние обмена веществ).

К высокой плотности воды организмы адаптируются в основном двумя путями. Одни используют ее как опору и находятся в состо­янии свободного парения. Плотность (удельный вес) таких орга­низмов обычно мало отличается от плотности воды. Этому спо­собствует полное или почти полное отсутствие скелета, наличие выростов, капелек жира в теле или воздушных полостей. Такие организмы объединяются в группу планктона (греч. планктос -блуждающий). Различают растительный (фито-) и животный (зоо-) планктон. Размеры планктонных организмов обычно невелики. Но на их долю приходится основная масса водных обитателей.

Активно передвигающиеся организмы (пловцы) адаптируются к преодолению высокой плотности воды. Для них характерна продол­говатая форма тела, хорошо развитая мускулатура, наличие струк­тур, уменьшающих трение (слизь, чешуя). В целом же высокая плот­ность воды имеет следствием уменьшение доли скелета в общей массе тела гидробионтов по сравнению с наземными организмами.

В условиях недостатка света или его отсутствия организмы для ориентации используют звук. Он в воде распространяется намного быстрее, чем в воздухе. Для обнаружения различных препятствий используется отраженный звук по типу эхолокации. Для ориентации используются также запаховые явления (в воде запахи ощущают­ся намного лучше, чем в воздухе). В глубинах вод многие организ­мы обладают свойством самосвечения (биолюминесценции).

Растения, обитающие в толще воды, используют в процессе фо­тосинтеза наиболее глубоко проникающие в воду голубые, синие и сине-фиолетовые лучи. Соответственно и цвет растений меняется с глубиной от зеленого к бурому и красному.

Адекватно адаптационным механизмам выделяются следующие группы гидробионтов: отмеченный выше планктон - свободнопарящие, нектон (греч. нектос - плавающий) - активно передвига­ющиеся, бентос (греч. бентос - глубина) - обитатели дна, пелагос (греч. пелагос - открытое море) - обитатели водной толщи, нейстон - обитатели верхней пленки воды (часть тела может быть в воде, часть - в воздухе).

Воздействие человека на водную среду проявляется в уменьше­нии прозрачности, изменении химического состава (загрязнении) и температуры (тепловое загрязнение). Следствием этих и других воз­действий является обеднение кислородом, снижение продуктивнос­ти, смены видового состава и другие отклонения от нормы. Подроб­нее эти вопросы рассматриваются в ч. II работы (разд.VII, VII.5).

Наземно-воздушная среда. Эта среда относится к наиболее сложной как по свойствам, так и по разнообразию в пространстве. Для нее характерна низкая плотность воздуха, большие колебания температуры (годовые амплитуды до 100°С), высокая подвижность атмосферы. Лимитирующими факторами чаще всего являются недостаток или избыток тепла и влаги. В отдельных случаях, на­пример под пологом леса, недостаток света.

Большие колебания температуры во времени и ее значительная изменчивость в пространстве, а также хорошая обеспеченность кислородом явились побудительными мотивами для появления организмов с постоянной температурой тела (гомойотермных). Гомойотермия позволила обитателям суши существенно расширить место обитания (ареалы видов), но это неизбежно связано с повы­шенными энергетическими тратами.

Для организмов наземно-воздушной среды типичны три меха­низма адаптации к температурному фактору: физический, хи­мический, поведенческий. Физический осуществляется ре­гулированием теплоотдачи. Факторами ее являются кожные покро­вы, жировые отложения, испарение воды (потовыделение у живот­ных, транспирация у растений). Этот путь характерен для пойкилотермных и гомойотермных организмов. Химические адаптации базируются на поддержании определенной температуры тела. Это требует интенсивного обмена веществ. Такие адаптации свойствен­ны гомойотермным и лишь частично пойкилотермным организмам. Поведенческий путь осуществляется посредством выбора орга­низмами предпочтительных положений (открытые солнцу или за­тененные места, разного вида укрытия и т. п.). Он свойственен обеим группам организмов, но пойкилотермным в большей степени. Рас­тения приспосабливаются к температурному фактору в основном через физические механизмы (покровы, испарение воды) и лишь частично - поведенчески (повороты пластинок листьев относительно солнечных лучей, использование тепла земли и утепляющей роли снежного покрова).

Адаптации к температуре осуществляются также через разме­ры и форму тела организмов. Для уменьшения теплоотдачи выгод­нее крупные размеры (чем крупнее тело, тем меньше его по­верхность на единицу массы, а следовательно, и теплоотдача, и наоборот). По этой причине одни и те же виды, обитающие в более холодных условиях (на севере), как правило, крупнее тех, которые обитают в более теплом климате. Эта закономерность называется правилом Бергмана. Регулирование температуры осуществляется также через выступающие части тела (ушные раковины, конечно­сти, органы обоняния). В холодных районах они, как правило, мень­ше по размерам, чем в более теплых (правило Аллена).

О зависимости теплоотдачи от размеров тела можно судить по количеству кислорода, расходуемого при дыхании на единицу массы различными организмами. Оно тем больше, чем меньше размеры животных. Так, на 1 кг массы потребление кислорода (смУчас) со­ставило: лошадь - 220, кролик - 480, крыса -1800, мышь - 4100.

Регулирование водного баланса организмами. У животных различают три механизма: морфологический - через форму тела, покровы; физиологический - посредством высвобождения воды из жиров, белков и углеводов (метаболическая вода), через испа­рение и органы выделения; поведенческий - выбор предпочти­тельного расположения в пространстве.

Растения избегают обезвоживания либо посредством запаса­ния воды в теле и защиты ее от испарения (суккуленты), либо че­рез увеличение доли подземных органов (корневых систем) в об­щем объеме тела. Уменьшению испарения способствуют также различного рода покровы (волоски, плотная кутикула, восковой на­лет и др.). При избытке воды механизмы ее экономии слабо выра­жены. Наоборот, некоторые растения способны выделять избыточ­ную воду через листья, в капельно-жидком виде («плач растений»).

Воздействия человека на наземно-воздушную среду и ее обитателей многообразны. Они рассматриваются во второй части работы.

Почвенная среда. Эта среда имеет свойства, сближающие ее с водной и наземно-воздушной средами.

Многие мелкие организмы живут здесь как гидробионты - в поровых скоплениях свободной воды. Как и в водной среде, в почвах невелики колебания температур. Амплитуды их быстро затухают с глубиной. Существенна вероятность дефицита кислорода, осо­бенно при избытке влаги или углекислоты. Сходство с наземно-воздушной средой проявляется через наличие пор, заполненных воз­духом.

К специфическим свойствам, присущим только почве, относит­ся плотное сложение (твердая часть или скелет). В почвах обычно выделяют три фазы (части): твердую, жидкую и газообразную. В. И. Вернадский почву отнес к биокосным телам, подчеркивая этим большую роль в ее образовании и жизни организмов и продук­тов их жизнедеятельности. Почва- наиболее насыщенная живы­ми организмами часть биосферы (почвенная пленка жизни). По­этому в ней иногда выделяют четвертую фазу - живую.

Есть основание рассматривать почву как среду, которая играла промежуточную роль при выходе организмов из воды на сушу (М. С. Гиляров). Кроме перечисленных выше свойств, сближаю­щих эти среды, в почве организмы находили защиту от жесткого космического излучения (при отсутствии озонового экрана).

В качестве лимитирующих факторов в почве чаще всего высту­пает недостаток тепла (особенно при вечной мерзлоте), а также недостаток (засушливые условия) или избыток (болота) влаги. Реже лимитирующими бывают недостаток кислорода или избыток угае-кислоты.

Жизнь многих почвенных организмов тесно связана с порами и их размером. Одни организмы в порах свободно передвигаются. Другие (более крупные организмы) при передвижении в порах из­меняют форму тела по принципу перетекания, например дождевой червь, или уплотняют стенки пор. Третьи могут передвигаться толь­ко разрыхляя почву или выбрасывая на поверхность образующий ее материал (землерои). Из-за отсутствия света многие почвен­ные организмы лишены органов зрения. Ориентация осуществля­ется с помощью обоняния или других рецепторов.

Воздействия человека проявляются в разрушении почв (эрозии), загрязнении, изменении химических и физических свойств. Эти вопросы рассматриваются в ч. II работы (ra.VIII).

Организмы как среда обитания. С данной средой связан па­разитический и полупаразитический образ жизни. Организмы этих групп получают кондиционированную среду (по температуре, влаж­ности и другим параметрам) и готовую легкоусвояемую пищу. Ре­зультатом этого является упрощение всех систем и органов, а так­же потеря некоторых из них. Наиболее слабое (лимитирующее) звено в жизни паразитов - возможность потери хозяина. Это неиз­бежно при его смерти. По этой причине паразиты, как правило, не убивают своего хозяина («разумный паразитизм») и имеют при­способления, увеличивающие вероятность выживания в случае по­тери хозяина. Основной путь сохранения вида (популяции) в таких условиях - большое число зачатков («закон большого числа яиц») в виде долгосохраняющихся цист, спор и т. п. Это увеличивает ве­роятность встречи с хозяином. Часто используются промежуточ­ные хозяины.

Человек может как увеличивать, так и уменьшать числен­ность паразитов, воздействуя как на среду для организмов-хозяинов, так и непосредственно на последних. Используются различные методы прямого уничтожения или ограничения чис­ленности паразитов.

Вопросы и задания

1. В каких сочетаниях используется термин «среда»? В чем от­личие этих сочетаний?

2. Что понимается под экологическим фактором? Приведите классификации факторов по двум известным Вам принципам. Ка­кие факторы являются наиболее трудными для адаптации к ним организмов?

3. Перечислите общие закономерности действия факторов сре­ды на организмы. Раскройте их сущность и значение.

4. Перечислите среды жизни и наиболее типичные их свойства. Назовите присущие отдельным средам жизни лимитирующие фак­торы, адаптации организмов.

III. БИОСФЕРА

III.1. Биосфера как глобальная экосистема

Рассмотрение основополагающих вопросов общей экологии целе­сообразно начать со знакомства с биосферой как глобальной экосис­темой и закономерностями ее функционирования. В таком случае разделы экологии более низкого ранга (популяционный, экосистемный) будут в определенной мере подчинены углубленному раскры­тию закономерностей существования биосферы и допустимых пре­делов вмешательства в нее или ее звенья человека. Другими слова­ми, на уровне экосистем элементарного плана должен осуществляться в основном принцип локальных действий, в то время как био­сферный уровень формирует базу для глобального мышления.

В настоящее вре


<== предыдущая | следующая ==>
С. 229, 237-240, 270-279 и др | Продолжительность жизни мышей при асфиксии

Date: 2015-09-27; view: 1135; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию