Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Восстановление озонового слоя





Проблема сокращения озона в атмосфере сразу привлекла к себе внимание мирового сообщества. В 1985 году была принята Венская конвенция об охране озонового слоя. В 1987 году был принят Монреальский протокол, по которому определили перечень наиболее опасных хлорфторуглеродов, и страны-производители хлорфторуглеродов обязались снизить их выпуск. В июне 1990 года в Лондоне в Монреальский протокол внесли уточнения: к 1995 году снизить производство фреонов вдвое, а к 2000 году прекратить его совсем.

 

Человечеством были приняты меры по ограничению выбросов хлор- и бромсодержащих фреонов (хладонов) путем перехода на фторсодержащие фреоны. Однако процесс восстановления озонового слоя должен занять несколько десятилетий из-за большого объемом накопленных в атмосфере фреонов, которые имеют период распада в десятки и сотни лет. Поэтому затягивание озоновой дыры не стоит ожидать ранее 2048 года.

 

Парниковый эффект (оранжерейный эффект) атмосферы, Парниковый эффект – это задержка атмосферой Земли теплового излучения планеты. Парниковый эффект наблюдал любой из нас: в теплицах или парниках температура всегда выше, чем снаружи. То же самое наблюдается и в масштабах Земного шара: солнечная энергия, проходя через атмосферу нагревает поверхность Земли, но излучаемая Землей тепловая энергии не может улетучиться обратно в космос, так как атмосфера Земли задерживает ее, действуя наподобие полиэтилена в парнике: она пропускает короткие световые волны от Солнца к Земле и задерживает длинные тепловые (или инфракрасные) волны, излучаемые поверхностью Земли. Возникает эффект парника. Парниковый эффект возникает из-за наличия в атмосфере Земли газов, которые обладают способностью задерживать длинные волны. Они получили название «парниковых» или «тепличных» газов.

Парниковые газы присутствовали в атмосфере в небольших количествах (около 0,1%) с момента ее образования. Этого количества было достаточно, чтобы поддерживать за счет парникового эффекта тепловой баланс Земли на уровне, пригодном для жизни. Это так называемый естественный парниковый эффект, не будь его средняя температура поверхности Земли была бы на 30°С меньше, т.е. не +14° С, как сейчас, а -17° С.

Естественный парниковый эффект ничем не грозит ни Земле, ни человечеству, поскольку общее количество парниковых газов поддерживалось на одном уровне за счет круговорота природы, более того, ему мы обязаны жизнью.

Но увеличение в атмосфере концентрации парниковых газов приводит к усилению парникового эффекта и нарушению теплового баланса Земли. Именно это и произошло в последние два столетия развития цивилизации. Угольные электростанции, автомобильные выхлопы, заводские трубы и другие созданные человечеством источники загрязнения выбрасывают в атмосферу около 22 миллиардов тонн парниковых газов в год.

Благодаря П. э. при ясном небе только 10—20% земного излучения может, проникая сквозь атмосферу, уходить в космическое пространство.

К наиболее известным и распространенным парниковым газам относятся водяной пар2О), углекислый газ (CO2), метан (СН4) и веселящий газ или закись азота (N2O). Это парниковые газы прямого действия. Большая часть их образуется образуются в процессе сжигания органического топлива.

Кроме того, есть еще две группы парниковых газов прямого действия, это галоуглероды и гексафторид серы (SF6). Их выбросы в атмосферу связанны с современными технологиями и промышленными процессами (электроника и холодильное оборудование). Их количество в атмосфере совсем ничтожно, но они их влияние на парниковый эффект (т.н. потенциал глобального потепления/ПГП), в десятки тысяч раз сильнее, чем CO2.

Водяной пар — основной парниковый газ, ответственный более, чем за 60% естественного парникового эффекта. Антропогенное увеличение его концентрации в атмосфере пока не отмечалось. Однако увеличение температуры Земли, вызванное другими факторами, усиливает испарение воды океана, что, может привести к росту концентрации водяного пара в атмосфере и – к усилению парникового эффекта. С другой стороны, облака в атмосфере отражают прямой солнечный свет, что уменьшает поступление энергии на Землю и, соответственно,снижает парниковый эффект.

Углекислый газ – наиболее известный из парниковых газов. Естественными источниками СО2 являются вулканические выбросы, жизнедеятельность организмов. Антропогенными источниками являются сжигание органического топлива (включая лесные пожары), а также целый ряд промышленных процессов (например, производство цемента, стекла). Углекислый газ,по мнению большинства исследователей, несет основную ответственность за глобальное потепление, вызванное «парниковым эффектом». Концентрация CO2 за два века индустриализации выросла более, чем на 30% и коррелируется с изменением среднемировой температуры.


Метан - второй по значимости парниковый газ. Выделяется из-за утечки на разработке месторождений каменного угляи природного газа, из трубопроводов, при горении биомассы, на свалках (как составная часть биогаза), а также в сельском хозяйстве (скотоводство, рисоводство) и т.п. Животноводство, применение удобрений, сжигание угля и другие источники дают около 250 миллионов тонн метана в год Количество метана в атмосфере невелико, но его парниковый эффект или потенциал глобального потепления (ПГП) в 21 раз сильнее, чем у СO2.

Закись азота –третий по значимости парниковый газ: его воздействие в 310 раз сильнее, чем у СO2,, но содержится в атмосфере он в очень небольших количествах. В атмосферу попадает в результате жизнедеятельности растений и животных, а также при производстве и применении минеральных удобрений, работе предприятий химической промышленности.

Галоуглероды (гидрофторуглероды и перфторуглероды) - газы, созданные для замены озоноразрушающих веществ. Используются в основном в холодильном оборудовании. Имеют исключительно высокие коэффициенты влияния на парниковый эффект: в 140-11700 раз выше, чем у СО2.Их эмиссии (выделение в окружающую среду) невелики, но быстро возрастают.

Гексафторид серы –его поступление в атмосферу связано с электроникой и производством изоляционных материалов. Пока оно невелико, но объем постоянно возрастает. Потенциал глобального потепления равен 23900 ед.

ЭМЕРДЖЕНТНОСТЬ — качество, свойства системы, которые не присущи ее элементам в отдельности, а возникают благодаря объединению этих элементов в единую, целостную систему.

- несводимость свойств системы в целом к свойствам элементов системы.

Эмерджентность (англ. emergence — возникновение, появление нового) в теории систем — наличие у какой-либо системы особых свойств, не присущих её подсистемам и блокам, а также сумме элементов, не связанных особыми системообразующими связями; несводимость свойств системы к сумме свойств её компонентов; синоним — «системный эффект».
В биологии и экологии понятие эмерджентности можно выразить так: одно дерево — не лес, скопление отдельных клеток — не организм[1]. Например, свойства биологического вида или биологической популяции не представляют собой свойства отдельных особей, понятия рождаемость, смертность, неприменимы к отдельной особи, но применимы к популяции или виду в целом[2].
В эволюционистике выражается как возникновение новых функциональных единиц системы, которые не сводятся к простым перестановкам уже имевшихся элементов.
В почвоведении: эмерджентным свойством почвы является плодородие.
В классификации систем эмерджентность может являться основой их систематики как критериальный признак системы.

 

Этногенез (от греч. éthnos — племя, народ и génesis — происхождение, возникновение) — это процесс сложения этнической общности (этноса) на базе различных этнических компонентов. Этногенез — начальный этап этнической истории. По завершении этногенеза может происходить включение в сложившийся этнос других ассимилируемых им групп, дробление и выделение новых этнических групп.


Исторически различаются два типа этногенеза. Первый относится к этнической истории первобытнообщинного и докапиталистического обществ и завершается образованием народностей (преимущественно в раннефеодальный период). В этногенетических процессах второго типа при сложении современных этнических общностей (например, современных народов Америки) решающую роль играли представители уже сформировавшихся народов и процессы аккультурации.

Этногенез характеризуется взаимосвязью двух видов этногенетических процессов, консолидацией автохтонных (родственных и неродственных) этнических компонентов и включением в процесс этногенеза переселенцев (мигрантов).

В процессе этногенеза, под влиянием особенностей хозяйственной деятельности в определенных природных условиях и других причин, формируются специфические для нового этноса черты материальной и духовной культуры, быта, групповых психологических характеристик, отличающие его от иных (в том числе соседствующих) этносов. У членов новой этнической общности появляется общее самосознание, видное место в котором занимает представление об общности их происхождения. Внешним проявлением этого самосознания является общее самоназвание — автоэтноним (например, американцы).

Этногенез не является однородным и равномерно идущим процессом. Необходимо учитывать неравномерное и сложное его развитие по основным его составляющим: культурная, языковая, генетическая, институциональная и территориальная. Отличие хотя бы в одной из составляющих позволяет ставить вопрос о процессах трансформации или разделения этноса, то есть об этногенезе.

Изучение этногенеза требует комплексного подхода с привлечением данных смежных дисциплин: этнографии, антропологии, археологии, сравнительного языкознания.

 

Партеногенез — форма полового размножения, когда развитие организма происходит из неоплодотворённой женской половой клетки. У животных партеногенез встречается у всех беспозвоночных и позвоночных, за исключением млекопитающих. Особые формы партогенеза – андрогенез и гиногенез.

Партеногенез (от греч. parthénos — девственница и...генез), девственное размножение, одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются без оплодотворения.П. — половое, но однополое размножение — возник в процессе эволюции организмов у раздельнополых форм. В тех случаях, когда партеногенетические виды представлены (всегда или периодически) только самками, одно из главных биологических преимуществ П. заключается в ускорении темпа размножения вида, так как все особи подобных видов способны оставить потомство. В тех случаях, когда из оплодотворённых яйцеклеток развиваются самки, а из неоплодотворённых — самцы, П. способствует регулированию численных соотношений полов (например, у пчёл). П. следует отличать от бесполого размножения, которое осуществляется всегда при помощи соматических органов и клеток (размножение делением, почкованием и т.п.). Различают П. естественный — нормальный способ размножения некоторых организмов в природе и искусственный, вызываемый экспериментально действием разных раздражителей на неоплодотворённую яйцеклетку, в норме нуждающуюся в оплодотворении.


Партеногенез у животных. Исходная форма П. — зачаточный, или рудиментарный, П., свойственный многим видам животных в тех случаях, когда их яйца остаются неоплодотворёнными. Как правило, зачаточный П. ограничивается начальными стадиями зародышевого развития; однако иногда развитие достигает конечных стадий (случайный, или акцидентальный, П.). Полный естественный П. — возникновение вполне развитого организма из неоплодотворённой яйцеклетки — встречается во всех типах беспозвоночных. Обычен он у членистоногих (особенно у насекомых). П. открыт и у позвоночных — рыб, земноводных, особенно часто встречается у пресмыкающихся (этим способом размножаются не менее 20 рас и видов ящериц, гекконов и др.). У птиц большая склонность к П., усиленная искусственным отбором до способности давать половозрелых особей (всегда самцов), обнаружена у некоторых пород индеек. У млекопитающих известны только случаи зачаточного П.; единичные случаи полного развития наблюдались у кролика при искусственном П.

. Обычно (у многих тлей, дафний, коловраток и др.) летние партеногенетические поколения состоят из одних самок, а осенью появляются поколения из самцов и самок, которые оставляют на зиму оплодотворённые яйца. Многие виды животных, не имеющие самцов, способны к длительному размножению путём П. — так называемый константный П. У некоторых видов наряду с партеногенетической женской расой существует обоеполая раса (исходный вид), занимающая иногда др. ареал — так называемый географический П. (бабочки чехлоноски, многие жуки, многоножки, моллюски, коловратки, дафнии, из позвоночных — ящерицы и др.).

Искусственный П. у животных был впервые получен русским зоологом А. А. Тихомировым. Он показал (1886), что неоплодотворённые яйца тутового шелкопряда можно побудить к развитию растворами сильных кислот, трением и др. физико-химическими раздражителями. В дальнейшем искусственный П. был получен Ж. Лёбом и др. учёными у многих животных, главным образом у морских беспозвоночных (морские ежи и звёзды, черви, моллюски), а также у некоторых земноводных (лягушка) и даже млекопитающих (кролик). В конце 19 — начале 20 вв. опыты по искусственному П. привлекали особое внимание биологов, давая надежду с помощью этой физико-химической модели активации яйцапроникнуть в сущность процессов оплодотворения. Искусственный П. вызывают действием на яйца гипертонических или гипотонических растворов (так называемый осмотический П.), уколом яйца иглой, смоченной гемолимфой (так называемый травматический П. земноводных), резким охлаждением и особенно нагревом (так называемый температурный П.), а также действием кислот, щелочей и т.п. С помощью искусственного П. обычно удаётся получать лишь начальные стадии развития организма; полный П. достигается редко, хотя известны случаи полного П. даже у позвоночных животных (лягушка, кролик). Способ массового получения полного П., разработанный (1936) для тутового шелкопряда Б. Л. Астауровым, основан на точно дозированном кратковременном прогреве (до 46 °С в течение 18 мин)извлечённых из самки неоплодотворённых яиц. Этот способ даёт возможность получать у тутового шелкопряда особи только женского пола, наследственно идентичные с исходной самкой и между собой. Получаемые при этом ди-, три- и тетраплоидные клоны можно размножать посредством П. неограниченно долго. При этом они сохраняют исходную гетерозиготность и "гибридную силу". Отбором получены клоны, размножающиеся посредством П. так же легко, как обоеполые породы посредством оплодотворения (более 90% вылупления активированных яиц и до 98% жизнеспособности). П. представляет разносторонний интерес для практики шелководства.

 

Коэволюция - принцип гармонического совместного развития природы и общества, являющийся необходимым условием и предпосылкой будущего существования и прогресса человечества.

лат.Co - вместе + Evolutio – развертывание

 

Российский академик Н.Н.Моисеев (1917-2000) в своих трудах дал научные основы перехода России к устойчивому развитию. Основная идея «Концепции устойчивого эк-го развития выглядит так: человечеству следует вести мировое хозяйство так, чтобы не вредить следующим поколениям. Устойчивое развитие – это путь общества, приемлемый для сохранения экологической ниши человека и создание благоприятных условий для выживания цивилизации. Экологической нишей человечества является вся биосфера, поэтому устойчивое развитие Н.Н.Моисеев трактует как совместную, скоординированную эволюцию человека и биосферы (коэволюцию).

 

Ноосфера (от греч. noos - разум) - это современная биосфера, частью которой является человечество. "Человечество, взятое в целом - писал Вернадский - становится мощной геологической силой. И перед ним, перед его мыслью и трудом, становится вопрос о перестройке биосферы в интересах свободно мыслящего человечества как единого целого. Это новое состояние биосферы, к которому мы, не замечая этого, приближаемся, и есть ноосфера… [Человек] может и должен перестраивать своим трудом и мыслью область своей жизни, перестраивать коренным образом по сравнению с тем, что было раньше".

Вернадский считал движущей силой ноосферы не только разум, но и дух народа - его биополе. Действительно, часто в местах народных волнений происходят природные катаклизмы. И только в XXI веке эти идеи получили экспериментальное подтверждение.
В взаимосвязи биополя и структуры воды. Рассматривая воду как минерал, Вернадский в работе "История минералов земной коры" дал минералогию воды. Он развивал учение о единстве вод и других минералов Земли. Вода - самый распространённый на Земле минерал, присутствует везде и служит мостом, связывающим биополя отдельных живых существ, как между собой, так и с неживой природой.

 

Синергетика изучает системы, состоящие из огромного множества взаимодействующих частиц (слово «частицы» здесь использовано в обобщающем смысле и может быть заменено по желанию на «объекты», «индивиды», «субъекты рынка» и т.д. и т.п.). Основы этой науки были заложены применительно к физической химии профессором Свободного университета в Брюсселе Ильей Романовичем Пригожиным, награжденным за полученные им результаты Нобелевской премией. Он назвал эту науку наукой о самоорганизации, или наукой о сложном. Позже немецкий физик Г.Хакен успешно применил те же принципы к исследованию явлений в квантовых генераторах и предложил ныне широко используемое название «синергетика». Синергетика появилась не сразу, не в силу озарения. С начала ХХв. стало расти осознание того, что весь окружающий мир не может быть описан законами только классической механики. Люди в практической деятельности сталкивались с явлениями, которые не могли быть описаны в рамках известных на тот период теорий, построенных для детерминированных систем, например, небесной механики. Оказалось, что необходимо знать законы стохастических процессов, в частности, развитие радиосвязи и телефонных сетей потребовало развития теории нелинейных систем.

Сам термин «синергетика» происходит от греческого «синергена» - содействие, сотрудничество, «вместедействие».

По Хакену, синергетика занимается изучением систем, состоящих из большого (очень большого, «огромного») числа частей, компонент или подсистем, одним словом, деталей, сложным образом взаимодействующих между собой. Слово «синергетика» и означает «совместное действие», подчеркивая согласованность функционирования частей, отражающуюся в поведении системы как целого. Очевидно, что методологии разных областей знания столь различны, что их общность может быть реализована лишь на концептуальном уровне. Подтверждением того, что замысел Г. Хакена был в определенной мере неопределенен и субъективен, являются свидетельства некоторых ученых, в

беседах с которыми Г. Хакен говорил, что называние предложенного им научного направления «синергетикой» случайно и непринципиально. Трудно, однако, согласиться с мнением, что название непринципиально, и с полаганием, что синергетику можно было бы с не меньшим успехом назвать Х–наукой. В конечном счете начинание Г. Хакена оказалось плодотворным именно благодаря естественно понимаемой ассоциации синергетики с самоорганизацией.

«Синергетика — (от греч. synergetikos — совместный, согласованный, действующий), научное направление, изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах

(биологических, физико–химических и других) благодаря интенсивному (потоковому) обмену веществом и энергией с окружающей средой в неравновесных условиях. В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень ее упорядоченности, т. е. уменьшается энтропия (самоорганизация). Основа

синергетики — термодинамика неравновесных процессов, теория случайных процессов, теория нелинейных колебаний и волн».

 







Date: 2015-09-22; view: 532; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.014 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию