Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Ошибка в расчетах





 

В 1941 году германская научная мысль в области атомных исследований переживала кризис. В те самые месяцы, когда стало ясно, что Германия терпит поражение в Битве за Англию, немецкие ученые начали понимать, что их надеждам на легкое получение изотопа урана‑235 не суждено осуществиться. Они всеми силами пытались бороться со все новыми и новыми проблемами, обрушивавшимися на них после того, как в Гейдельберге была теоретически доказана невозможность применения графита в качестве замедлителя в ядерном реакторе. Если в 1940 году казалось, что военное использование ядерной энергии – дело ближайших месяцев, уже в начале 1941‑го физики‑ядерщики почувствовали себя путниками, которые из последних сил преодолевали трудный путь и, дойдя до конца дороги, увидели, что на самом деле она только начинается и перед ними вновь расстилается бесконечно длинная лента.

Объявленные в январе 1941 года выводы о применении графита на самом деле были ошибочными. Около семи месяцев назад ответственный за вычисление ядерной константы для графита физик проделал простой эксперимент и определил длину диффузии[10]для термальных нейтронов в углероде как 61 сантиметр. Профессор Боте искренне верил в то, что после удаления из материала примесей эту цифру удастся увеличить до более чем 70 сантиметров. Все это доказывало, что чистый графит в силу своей дешевизны и широкого распространения был идеальным материалом для использования в качестве замедлителя в урановом реакторе. Управлением вооружений армии был подготовлен контракт на поставку в рамках ядерной программы значительного количества углерода высочайшей чистоты.

Однако к январю 1941 года были завершены контрольные расчеты ученых Гейдельбергского института. Они показали, что в предыдущие расчеты где‑то закралась ошибка. При использовании компанией «Siemens» очищенного графита в 110‑сантиметровом реакторе сферической формы выяснилось, что вместо ожидаемых 70 сантиметров длина диффузии едва ли превышает 35 сантиметров. Профессор Боте сделал вывод о том, что, если не удастся достичь значительного обогащения урана‑235, применяемого в реакторе, чистый графит не сможет быть использован как замедлитель. Он не очень верил в то, что на результатах эксперимента могло сказаться наличие в графите примесей в виде водорода или азота[11].

В предыдущем году профессор Йоос из Геттингена попытался произвести графит высокой чистоты без примесей бора, которых было много в предыдущих образцах. С этой целью он нагревал различные углеводороды, такие как сахар и картофельный крахмал. Однако эксперименты Боте продемонстрировали невозможность применения углеводорода в качестве замедлителя, поэтому Йоос прекратил свои опыты. Примерно такую же ошибку в Кембридже совершили ученые – эмигранты из Франции X. Халбан и Л. Коварски, которые за год до этого помогли союзникам овладеть мировыми запасами тяжелой воды: они проводили эксперименты с использованием очищенного графита, пытаясь достичь цепной реакции. Как и у немцев, результаты были неутешительными.

Если бы результаты работы немецких физиков не повлияли на решимость профессора Пауля Гартека в Гамбурге продолжать свои опыты с использованием двуокиси углерода и оксида урана, начатые в 1940 году, возможно, тогда у них, наконец, появились бы точные данные о поглощении нейтронов чистым углеродом. К сожалению, досадная ошибка Боте так и не была оспорена его коллегами. И в то время как в Германии все отказались от мысли применения углеродных замедлителей, построенный два года спустя в США первый урановый реактор работал именно с графитовыми замедлителями; предприятия по производству плутония в Ханфорде, США, также использовали графитовые замедлители. Что касается германской атомной программы, она теперь полностью зависела от тонкой струйки тяжелой воды, поступавшей в рейх с предприятия из Веморка близ Рьюкана.

Доктор Карл Вирц, ведущий физик Института физики в Берлин‑Далеме, по распоряжению управления вооружений отправился инспектировать завод в Веморке. Вирц вошел в число ученых, занятых в атомном проекте, благодаря своей довоенной специализации – он занимался тяжелой водой и ее свойствами. Высокий, большеголовый, с нервной быстрой речью, Вирц стал одним из ведущих немецких ученых, работавших над атомным проектом. Он был на «ты» с главным инженером завода в Веморке доктором Йомаром Бруном. Брун вместе с профессором Лейфом Тронстадом был автором исследования плотности тяжелой воды.


Целью поездки Вирца не было определение потенциальных возможностей по увеличению производства тяжелой воды. Было известно, что компания «Norwegian Hydro» выпускала тяжелую воду в количествах, достаточных для удовлетворения только потребностей лабораторий, и, конечно, не могла обеспечить необходимые рейху многие тонны этого вещества. В отчете Вирца указывалось на то, что производственный процесс был крайне неэкономичным: он предусматривал повторное окисление водорода и его вторичный электролиз. Вирц подчеркивал, что даже в идеальных условиях для производства одного грамма тяжелой воды потребуется 100 киловатт‑часов энергии, затраты на которые в Германии составляли одну рейхсмарку. Отсюда следовало, что строительство предприятия по производству тяжелой воды на территории Германии было бы нецелесообразным даже при условии, что германская экономика окажется в состоянии выдержать эту дополнительную нагрузку.

 

Возможно, печальный результат неверных вычислений свойств графитового замедлителя оказался бы менее ощутимым для германской атомной программы, если бы ученым удалось найти оптимальный процесс обогащения урана‑235, то есть увеличение концентрации этого изотопа в общей массе урана. Если бы эта задача была решена, то в качестве замедлителя ядерной реакции можно было бы использовать обычную воду. Однако и здесь в начале 1941 года Гартеку и Иенсену пришлось признать свое поражение: при работе с гексафторидом урана оказалось невозможным применение процесса газоотделения Клузиуса – Диккеля. В лаборатории в Гамбурге была установлена четырехметровая двустенная никелевая труба, которая нагревалась за счет поступления пара на ее внутреннюю стенку. Соответственно охлаждение осуществлялось за счет понижения температуры внешней трубы. Между трубами был пропущен гексафторид урана, но все оказалось безрезультатным. Тогда на предприятии «И.Г. Фарбен» в Леверкузене была построена труба еще больших размеров, около пяти метров, и эксперимент был повторен. Однако при работе в заданном температурном режиме с гексафторидом урана результат снова оказался нулевым. Только спустя семнадцать дней, при работе с вдвое превышавшим нормальное содержанием урана‑235 в гексафториде урана, удалось получить менее чем однопроцентный показатель обогащения урана. Мюнхенский физик‑химик Л. Вальдман предположил, что причиной столь удручающего результата может быть то, что при таких высоких температурах происходил распад гексафторида, но это было не так. Таким образом, оказалось, что у немцев не было выбора: как и предвидел Клузиус, пентахлорид урана был неподходящим материалом для такой реакции, так как даже при отсутствии воды он распадался на тетрахлорид урана и хлор.

В конце 1940 года Р. Флейшман, который проводил подобные эксперименты в Гейдельберге, но с использованием стеклянных трубок, теоретически обосновал возможность получения в ходе процесса искомых изотопов урана. Однако к весне 1941 года все потеряли надежду на успех и этих экспериментов. Поскольку никто заранее не предвидел таких трудностей, ученые не рассматривали альтернативных вариантов обогащения урана, за исключением процесса с применением жидкостей, разработанного Клузиусом и его коллегами в Мюнхене. Они вновь подтвердили свою приверженность принципу «обратного хода», но предупредили, что необходимо найти подходящую форму раствора. В марте, когда ученые встретились на очередном совещании, каждый из них ощущал зловещую тень безысходности, нависшую над программой. Профессор Пауль Гартек проинформировал военных о том, что все работы зашли в тупик.


«Участники конференции считают, что нам срочно предстоит решить две важнейшие проблемы:

1. Производство тяжелой воды.

2. Выделение изотопов урана.

Из этих двух проблем решение первой в ближайшем будущем представляется наиболее важным, поскольку согласно существующей теории при наличии тяжелой воды реактор будет работать даже без обогащенного урана. Кроме того, производство для уранового реактора значительного количества тяжелой воды кажется нам, несомненно, более экономичным и простым процессом, чем двойное или тройное обогащение урана‑235, необходимое для того, чтобы перейти к использованию (в качестве замедлителя) обычной воды».

Говоря о второй проблеме, профессор Гартек заключил, что, если в ближайшее время не будет найден лучший способ выделения изотопов урана, к имеющемуся решению следует прибегать «только в особых случаях, когда экономичность не имеет определяющего значения». Под этим Гартек подразумевал получение атомных боеприпасов.

В мае вместе с доктором Вирцем он снова посетил норвежский завод в Веморке. Гартек хотел убедиться, насколько предложения Вирца помогут увеличить производство тяжелой воды. Там он впервые встретился с главным инженером предприятия доктором Бруном. Брун обратил внимание на то, что немцы тщательно избегают разговоров относительно целей использования тяжелой воды. В то же время он заметил, насколько важным для них является получение значительного количества этой жидкости.

Итак, перед немецкими учеными стояла непреодолимая задача по обогащению урана‑235. Военные решили поддержать несколько проектов в этой области. Авторство первого из них принадлежало ассистенту Института Гейзенберга в Лейпциге доктору Эриху Багге, который помогал доктору Дибнеру в первые недели работы над атомным проектом.

Через месяц после октябрьского 1940 года совещания в Лейпциге (о нем речь шла ранее) Багге предложил свой способ относительно быстрого выделения редких изотопов, показавшийся руководителям проекта оригинальным и перспективным. В нескольких словах его способ подразумевал создание узкого «молекулярного луча» нужного вещества, который проходит между двумя заслонками, вращающимися на определенной скорости с тем, чтобы зазор между ними приостанавливал прохождение одной «порции» молекул, пропуская другую. По закону распределения скоростей, установленному Максвеллом еще в середине XIX века, более легкие молекулы движутся в «луче» быстрее, чем тяжелые. Таким образом, через какое‑то время более легкие изотопы «обгонят» более медленные тяжелые. В случае с ураном предусматривалось отделение движущейся заслонкой более легкого изотопа в специальную емкость.


В начале апреля доктора Багге вызвали на совещание с участием доктора Дибнера и военных чинов в Берлине. Это произошло как раз перед тем, как Гартек представил свой знаменитый отчет. Дибнер сначала перевел Багге в Институт физики имени кайзера Вильгельма в Далеме, а затем 23‑го числа отправил его в Париж помогать Жолио‑Кюри и Гентнеру в восстановлении циклотрона. Перед тем как отправиться в Париж, Багге оставил руководству описание своего устройства, которое он назвал «изотопным шлюзом». Он все еще был во Франции, когда в конце июля туда прибыл Дибнер с новостью, что работы над выделением урановых изотопов зашли в тупик.

После того как стало понятно, что проект находится в кризисном состоянии, непосредственный руководитель Дибнера доктор Баше отправил проект Багге в Гамбург профессору Гартеку для рассмотрения и оценки. Теперь Багге должен был срочно вернуться в Германию. 2 августа он уже беседовал в Мюнхене с профессором Клузиусом, экспертом по выделению изотопов. «Он считает мое устройство вполне работоспособным», – писал об этой встрече сам Багге.

В течение следующего месяца Багге постоянно перемещается между Берлином, Лейпцигом, снова Берлином и Килем, консультируя соответствующих специалистов относительно своего изобретения. Кроме того, он сам искал нужных специалистов, способных предоставить важнейшую для его аппарата деталь – топку для тяжелых металлов. 11 сентября Багге предстал перед руководителем военных исследований профессором Э. Шуманом. «Мы собрались вместе с доктором Баше, – писал Багге в своем дневнике, – встреча сильно напоминала допрос, но ее результаты обнадеживали». Во время встречи Багге случайно узнал, чем был вызван этот повышенный интерес к выделению изотопов урана. Он услышал, как Дибнер и Баше обсуждали растущую стоимость атомной программы. Они сетовали на то, что люди и средства все больше отвлекаются от работ по получению урана‑235, поскольку согласно новой концепции решено сосредоточиться на производстве тяжелой воды и использовать в реакторе природный уран. При этом Дибнер полагал, что, даже если получение урана‑235 не является больше наиболее важной проблемой, этот изотоп абсолютно необходим для получения взрывчатого вещества. Таким образом, перед Багге неожиданно открылись новые перспективы.

Дибнер вновь отправил его в Париж, как он сказал, «до середины октября». Однако Багге было суждено вернуться в Берлин только в конце ноября. Ему предстояло представить свой «изотопный шлюз» группе специалистов в соответствующих областях: Гартеку, Клузиусу, Бонхофферу, Коршингу, Вирцу и, конечно, Баше с Дибнером. На совещании было принято окончательное решение приступить к созданию машины Багге. Создание прототипа было поручено берлинской фирме «Bamag‑Meguin». Прошло двенадцать месяцев с тех пор, как Багге представил руководству свой первый проект.

В то же время один из лучших ученых группы Гартека в Гамбурге доктор Вильгельм Грот начал разрабатывать устройство, свидетельствующее о том, как далеко немецкие физики продвинулись в атомной программе: ультрацентрифугу, предназначенную для обогащения изотопа урана‑235. Три года назад американский ученый Дж. Бимс опубликовал в журнале «Review of modern physics» описание газовой центрифуги. Как и профессор Мартин из Киля, Грот предложил адаптировать это изобретение для работы с гексафторидом урана. Теперь фактор тепловой диффузии можно было не учитывать, поскольку преимущество центрифуги заключалось в том, что разделение изотопов было основано на разнице в массе атомов, в данном случае урана‑235 и урана‑238. Их абсолютная масса при этом не играла никакой роли. Грот потратил несколько недель, прежде чем нашел предприятие, которое было готово изготовить для него прототип ультрацентрифуги.

В августе Грот начинает переговоры с главой исследовательского центра компании «Anschutz & Co.» со штаб‑квартирой в Киле доктором Бейерлем. Фирма специализировалась на производстве гироскопов. Через неделю с этой компанией был подписан контракт на изготовление прототипа ультрацентрифуги. 10 октября в Гамбург были отправлены первые чертежи, а еще через девять дней, после обсуждения проекта в Киле, был составлен окончательный проект, работа над которым завершилась к 22 октября. К тому времени компания уже произвела специальный двигатель, способный работать на скорости до 60 тысяч оборотов в минуту. Еще через два дня, когда Гартек, Баше и Дибнер собрались в управлении вооружений для обсуждения хода проекта, они решили, что, помимо «изотопного шлюза» Багге, следует дать зеленый свет и работам, осуществлявшимся компанией «Anschutz». Бейерль подсчитал, что стоимость прототипа ультрацентрифуги составит от 12 до 15 тысяч рейхсмарок.

Другие фирмы предлагали гораздо более жесткие условия. Гамбургская группа первоначально планировала создание двигателя центрифуги из особо прочных сплавов стали. Это считалось необходимым, исходя из предполагаемых высоких нагрузок на двигатель. Однако компания «Крупп», на которую предполагалось возложить поставку необходимых материалов, затребовала восемь месяцев на проведение соответствующих работ, поэтому ученым пришлось довольствоваться двигателем из легких сплавов. Компания «United Light Alloy Works» из Ганновера, напротив, гарантировала поставку нужного сплава марки «Bondur» к декабрю текущего года. Для того чтобы еще более ускорить создание ультрацентрифуги, сотрудники Гамбургского института решили построить ротор и вакуумную камеру в своей мастерской. Полностью работы планировалось завершить к концу февраля. Что касается экспериментов по технологии Клузиуса – Диккеля, первоначальные опыты с их аппаратурой решили провести с ксеноном, а не с гексафторидом урана. В декабре 1941 года Грот докладывал: «Теоретически ультрацентрифуга сможет переработать более двух килограммов гексафторида в день. При этом произойдет обогащение (урана‑235) более чем на семь процентов».

Несмотря на то что в 1941 году немцы склонялись к процессу обогащения урана по технологии Клузиуса – Диккеля, у них «в запасе» имелось еще как минимум семь различных способов достижения этой цели. Сюда относятся масс‑спектрограф лаборатории фон Арденне, тепловая диффузия, метод «вымывания» на основе закона распределения Нернста, применение растворов урана, «изотопный шлюз» доктора Багге, диффузия изотопов в металлах‑носителях и, наконец, ультрацентрифуга. В то же время немцы игнорировали процесс использования газовой диффузии при пропускании гексафторида урана через пористое тело. А ведь именно этот способ, разработанный немецким ученым Густавом Герцем[12], впоследствии был успешно применен в Великобритании и США. Дальнейшее изучение хода германской атомной программы показывает, что и здесь немцы допустили оплошность.

Летом 1941 года внимание немецких ученых вновь было приковано к использованию в качестве атомного топлива плутония. Прошлой осенью в лабораторию барона Манфреда фон Арденне в Берлин‑Лихтерфельде пришел новый сотрудник профессор Фриц Хоутерман. Судьба этого неординарно мыслившего ученого тоже сложилась весьма необычно. После победы национал‑социалистов на выборах 1933 года он эмигрировал из Германии в Россию, где читал лекции по физике в одном из организованных НКВД закрытых институтов тюремного типа. После германо‑советского пакта 1939 года и объявленной в связи с ним амнистии Хоутерман был выслан в Германию и передан в руки германской тайной полиции, а затем помещен в берлинскую тюрьму. Через три месяца его выпустили из тюрьмы, однако запретили работать в государственных учреждениях. Профессор Макс фон Лауэ использовал все свое влияние на то, чтобы уговорить фон Арденне принять злосчастного Хоутермана на работу в лабораторию в Лихтерфельде.

Такое решение, безусловно, пошло на пользу фон Арденне. Хоутерман приступил к выполнению своих новых обязанностей в первый день 1941 года. Первой поставленной перед ним задачей было определение эффективности различных методов выделения изотопов. Затем он приступил к определению эффективного сечения для медленных нейтронов в различных средах. Ему приходилось полагаться на существующие в природе источники излучения нейтронов, поскольку работы над созданием под эгидой почтового ведомства двух циклотронов только начинались.

Через восемь месяцев Хоутерман по результатам своей работы составил знаменитый отчет «К вопросу об инициировании цепной реакции». На 39 страницах машинописного текста он пересмотрел всю теоретическую часть проекта и впервые выполнил подробные расчеты для цепной реакции, инициированной быстрыми нейтронами[13]. Кроме того, он рассчитал критическую массу урана‑235, то есть количество этого вещества, необходимое для инициирования цепной реакции под воздействием быстрых нейтронов, которая приведет к взрыву огромной разрушительной силы. Многие историки настаивают на том, что немцы никогда не занимались вопросом определения критической массы урана‑235 и не думали о роли быстрых нейтронов в цепной реакции.

А ведь Хоутерман занимался и той и другой проблемой. В сентябре 1942 года Зигфрид Флюгге в своем докладе о цепной реакции с использованием быстрых нейтронов подчеркивал важность получения урана‑235 для «урановой бомбы». Примерно в то же время Гейзенберг в ответ на вопрос о размерах такой бомбы заявил, что она «будет размером с ананас». Год спустя Гейзенберг составил график, где показал ход цепной реакции быстрых нейтронов в массе урана‑235. Кроме того, он внес исправления в расчеты критической массы урана Хоутермана на основе аналогичных работ, проведенных в 1943 году физиками из Вены Йентшке и Линтнером.

В своем отчете Хоутерман подробно остановился на возможности применения в качестве ядерного топлива плутония. В начале февраля 1941 года немецкие ученые Фольц и Хаксель заявили, что могут экспериментально доказать, что поглощение нейтронов ураном‑238 на самом деле гораздо ниже, чем это было рассчитано теоретически. Далее авторы сделали вывод, что в связи с этим положение Вайцзеккера о том, что продукт распада урана‑239, в свою очередь, подлежит дальнейшему делению, следует пересмотреть, так как фактически было произведено очень небольшое количество этого вещества. Хоутермана не смутило это заявление. Он в ответ заявил, что следует уделять меньше внимания выделению необходимого изотопа урана, сосредоточившись на построении ядерного реактора правильной конструкции. Ведь в природном уране содержится в 139 раз больше урана‑238, чем урана‑235, а это значит, что необходимо приложить максимум усилий на правильном использовании имеющегося в изобилии урана‑238 и не тратить времени и ресурсов на значительно более редкий уран‑235. «Каждый нейтрон, вместо того чтобы вызвать деление урана‑235, захватывается ураном– 238 и создает тем самым новые ядра, которые подлежат делению под воздействием тепловых нейтронов»[14], – пишет Хоутерман.

Таким образом, любой реактор, в котором происходит цепная реакция урана, может рассматриваться как своего рода «машина трансформации изотопов», которая по своим возможностям значительно превосходит любые другие средства выделения изотопов. Остается только определить химические средства, с помощью которых можно получить этот новый элемент внутри уранового реактора.

Стройную теорию Хоутермана можно рассматривать в качестве поворотного пункта всего германского атомного проекта. Казалось, теперь оставалось только построить урановый реактор на тяжелой воде. А до тех пор, пока это решение не получит практического воплощения, следовало срочно начинать процесс выделения урана‑235.

 

Основной чертой любого большого научного открытия является его универсальность. Это особенно явно проявляется в военное время, когда различные научные школы в разных странах вынуждены действовать самостоятельно, ничего не зная о достижениях своих коллег. Этот тезис подтвердили параллельные исследования, проводившиеся в Германии и ее странах‑сателлитах и союзниками антигитлеровской коалиции в области, например, радиолокации и реактивных двигателей[15].

Летом 1940 года ученые, работавшие в ряде университетов стран‑союзниц, методом исключения остановились на единственном из множества способов выделения изотопа урана‑235. Один за другим из‑за непомерной дороговизны или технологической сложности были отметены электромагнитная реакция Нира, тепловая диффузия, применение центрифуги. Наконец, самой перспективной была признана диффузия газов через пористые тела. От тепловой диффузии, известной в Германии как «метод Клузиуса – Диккеля», пришлось отказаться, «поскольку не существует соединений урана, которые можно было бы в ней использовать».

Процесс газовой диффузии, взятый на вооружение британскими учеными, предполагает прохождение газообразного соединения урана, того самого единственно возможного для применения гексафторида урана, под точно рассчитанным давлением через мембрану. При этом атомы урана‑235 легче преодолевают препятствие, чем более тяжелые атомы другого изотопа. Для того чтобы добиться нужной степени обогащения, процесс необходимо многократно повторить. Оборудование, задействованное в процессе, требует значительных затрат энергии. К тому времени этот принцип был уже хорошо известен: он был опробован английским ученым Ф. Астоном еще на начальном этапе изучения свойств изотопов, а затем в начале 30‑х годов усовершенствован в Германии Густавом Герцем как способ выделения изотопов неона.

В декабре 1940 года группа британских ученых под руководством эмигранта Ф. Симона создала крупное предприятие, способное с помощью аппаратуры Герца ежедневно производить до одного килограмма 99‑процентного урана‑235. Занимая площадь примерно 40 акров, предприятие потребляло примерно 60 тысяч киловатт электроэнергии. В том же месяце фирма «ICI» получила контракт на производство гексафторида урана, газа, значительные запасы которого к тому времени уже имелись в Германии.

В целом по сравнению с Великобританией США тогда отставали в ядерной программе, несмотря на то что, как уже упоминалось выше, американскими учеными с помощью циклотрона в Беркли, штат Калифорния, был получен плутоний, являющийся альтернативным ядерным топливом. Встревоженный сообщениями, явно преувеличивавшими успехи ученых из «Вирус‑Хауса», летом 1940 года американский комитет по урану развернул исследовательскую программу под патронажем руководителя Национального совета по военным исследованиям доктора Ванневара Буша. Буш получил разрешение президента США провести консультации с британскими учеными, и в марте 1941 года из Вашингтона в Англию стали поступать первые научные отчеты. На основе этих данных профессор Пайерлс пришел к выводу, что критическая масса урана‑235 составит восемь килограммов или даже меньше. Еще через два месяца компании «Metropolitan‑Vickers» было поручено строительство предприятия по обогащению методом газовой диффузии урана‑235. Работы Кембриджской лаборатории по получению плутония были приостановлены в связи с отсутствием в Великобритании циклотрона.

Некоторые авторитетные британские ученые выразили сомнение относительно целесообразности использования плутония в качестве ядерного взрывчатого вещества. Ведь производство плутония, как они считали, следовало увязывать с производством тяжелой воды, что само по себе было бы не более простой задачей, чем получение урана‑235.

В июле 1941 года правительственный комитет по атомной программе MAUD составил специальный отчет, в котором были подробно рассмотрены основные аспекты ее реализации. В отчете, в частности, указывалось, что для создания атомной бомбы необходимо примерно 10–10,5 килограмма урана‑235; при этом мощность взрыва бомбы будет эквивалентна 1800 тоннам тринитротолуола. Далее комитет отмечал:

«По имеющимся данным, Германия предприняла серьезные шаги для получения значительных количеств тяжелой воды. Ранее мы предполагали, что это вещество будет иметь большое значение и для нашего проекта. Однако, как оказалось, применение тяжелой воды для высвобождения атомной энергии ограничивается рамками задач, далеко стоящих от ее использования непосредственно в военных целях. Не исключено, что немцы уже поняли это, поскольку путь, выбранный нашими учеными, является очевидным для любого грамотного физика».

На основе отчета был сделан вывод, что все необходимые для создания первой атомной бомбы компоненты будут в распоряжении Великобритании к концу 1943 года.

Могла ли Германия получить ядерное оружие раньше этого срока? Британская разведка предпринимала все необходимые меры для того, чтобы следить за работами противника в этой области. В частности, поскольку путь Германии к этому оружию зависел от продукции предприятия в Рьюкане, английская разведка сосредоточила усилия на отслеживании информации, связанной с этим предприятием, а также с любыми упоминаниями противником тяжелой воды. Когда летом 1941 года в Лондон поступили данные из Трондхейма относительно предпринимаемых Германией попыток увеличить производство тяжелой воды, британская разведка сделала вывод, что германскую атомную программу следовало воспринимать всерьез.

Копию телеграммы передали доктору Р. Джонсу, молодому ученому, являвшемуся одновременно офицером Интеллидженс сервис. Джонс связался с коммандером Эриком Уэлшем, руководителем норвежской секции Интеллидженс сервис, в годы Первой мировой войны офицером тральщика британских ВМС, а после нее – владельцем лакокрасочного предприятия в Норвегии. Женатый на гражданке Норвегии, Уэлш обладал скромным научным кругозором, что не вполне способствовало выполнению полученного им задания. Он подтвердил получение копии телеграммы из Трондхейма и тут же осведомился о том, что представляет собой эта самая тяжелая вода и видел ли кто‑нибудь вообще эту субстанцию. В ответ Джонс вновь подчеркнул важность задания руководства и попросил Уэлша обратиться за подробной информацией в компанию «Norwegian Hydro».

Вскоре пришел ответ из Трондхейма, оказавшийся для британской разведки неприятным сюрпризом: подозрительные норвежцы увидели в запросе притязания союзников на это предприятие после войны. Британский агент в Трондхейме прямо интересовался, не стоит ли за этим запросом британская фирма «Imperial Chemical Industries», конкурент «Norwegian Hydro» в мирное время. «Помните, – приписал агент, – что кровь тяжелее, чем даже тяжелая вода». Джонс сумел подавить в себе любопытство относительно автора‑остряка; впрочем, той же осенью эти два человека все равно встретились. Сейчас же на острие усилий Интеллидженс сервис в Норвегии оказался, к ужасу прикомандированных к этой службе ученых, коммандер Уэлш, единственный кадровый офицер разведки, обладавший хоть какими‑то научно‑техническими знаниями. Если раньше положение Уэлша в связи с важностью норвежских спецобъектов было очень прочным, теперь оно становилось практически незыблемым.

 

Америка все еще не вступила в войну, а американские физики все еще «не сосредоточили свои усилия на решении военных задач». Даже к середине 1941 года крупные лаборатории в США были склонны рассматривать уран в основном только как источник энергии, и только получение копии отчета британского комитета MAUD дало понять Вашингтону, что времена меняются. В то же время впервые была затронута серьезная проблема другого плана: представитель британских ученых кругов в Вашингтоне в письме в консультативный ученый комитет при кабинете министров напрямую указывал на необходимость решить для себя принципиальный вопрос: предусматривается ли применение ядерного оружия после его создания? «Например, захотят ли премьер‑министр нашей страны или американский президент и соответствующие штабы санкционировать полное разрушение Берлина и близлежащей территории одной‑единственной бомбой, если такое станет возможным?»

Такой вопрос, затрагивающий моральный аспект проблемы, был задан официальным историком, работавшим в годы войны в британской группе исследований в области атомной программы. Истина состояла в том, что в те времена перед британскими учеными не стояло дилеммы, и все, кроме убежденных пацифистов, были глубоко убеждены в справедливости войны и необходимости разгрома Германии. И особенно глубоко в этом были убеждены беженцы из Европы, сыгравшие столь значительную роль в создании бомбы. К тому же в те времена многие считали, что и немцы близки к открытию секрета ядерного оружия. Ведь, несмотря на то что многие видные ученые покинули страну, многие другие предпочли остаться. Среди них были такие признанные авторитеты, как Гейзенберг, Вирц, Ган, и многие другие лучшие умы страны, которые не мыслили себя вне ее. Разрозненные сведения о работе Германии над атомным оружием поступали из министерства экономического противодействия, из Швейцарии, из США, – все были озабочены возможной новой опасностью, исходившей из этой страны. Например, сотрудники министерства узнали о возрастающем интересе немцев к урановым рудникам Португалии; часть из них уже экспортировала в Германию свою продукцию. В то же министерство поступили данные о закупке немцами большого количества вентиляторов, пригодных к применению на предприятиях обогащения урана‑235 методом газовой диффузии.

И если большая часть этой информации на первый взгляд представляла собой разбросанные несистематизированные данные, которые нельзя было трактовать однозначно, от некоторых фактов нельзя было так просто отмахнуться: в частности, зачем немцам вдруг понадобилось резко увеличивать выпуск тяжелой воды. С помощью ученых, эмигрировавших из Германии в Великобританию, британские секретные службы начали поиск местонахождения и определение рода деятельности их бывших коллег‑физиков, сохранивших верность отечеству. Профессор Пайерлс и его коллеги составили для Интеллидженс сервис подробный список, куда включили шестнадцать наиболее значительных с их точки зрения имен, в основном из числа сотрудников знаменитого учреждения имени кайзера Вильгельма[16].

Британские разведывательные службы не обладали столь многочисленной агентурой в Германии, чтобы приставить к каждому из перечисленных ученых отдельного соглядатая, поэтому они пошли другим путем. Стали тщательно изучаться выходившие в Германии научные журналы и графики лекций; исходя из этого можно было определить рабочий распорядок каждого интересовавшего англичан ученого. Постепенно они получили полную картину их деятельности.

Члены комитета MAUD отдавали себе отчет в том, что без поддержки премьер‑министра их широкое, но сомнительное предприятие с самого начала было бы обречено на провал. Поэтому они позаботились о том, чтобы с их выводами ознакомился научный советник и доверенное лицо премьера профессор Линдеман, заблаговременно отправив ему копию своего доклада.

27 августа Линдеман написал Черчиллю на шести страницах конфиденциальное письмо, напоминая ему о сверхмощном взрывчатом веществе, примерно в миллион раз превосходившем химическую взрывчатку, о котором он ранее неоднократно рассказывал премьер‑министру. «В этом направлении проделана огромная работа и у нас, и в Америке, и, возможно, в Германии; примерно через два года такие бомбы будут готовы к применению». Он упростил расчеты и предположения комитета MAUD и свел их к утверждению, что в недалеком будущем «один аэроплан сможет доставлять к цели бомбу весом около одной тонны; при этом сила ее взрыва составит около двух тысяч тонн тротила». Линдеман утверждал, что союзники располагают значительными запасами урана в Канаде и Бельгийском Конго, напомнив Черчиллю, что «у немцев (таких запасов) не так много, но, боюсь, достаточно».

При правильной постановке производства стоимость одной бомбы при темпе производства один боеприпас в неделю составит 5 миллионов фунтов стерлингов; при этом придется лишь несколько переквалифицировать рабочий и инженерный состав, привлекая к работам персонал, занятый, например, в изготовлении турбин. «Люди, занимающиеся этой проблемой, готовы ставить десять к одному на свой успех. Я бы не поставил больше, чем два к одному, но тоже уверен, что в течение двух лет проблема будет решена. Но для меня ясно, что нам нужно торопиться. Было бы непростительно уступить первенство немцам и тем самым позволить им разгромить нас или, наоборот, взять реванш после того, как мы разгромим их».

Решение начать в Великобритании масштабные исследования в области ядерной физики было принято в конце сентября на заседании научного консультативного комитета при военном кабинете, сформулировавшем свои рекомендации премьер– министру Черчиллю. В докладе комитета подчеркивалась мысль, что единственными врагами Британии в Европе были Германия и ее союзники. Настаивая на немедленном начале соответствующих работ, комитет подчеркивал: «Невозможно переоценить важность разрушительной мощи нового оружия, а следовательно, и важность этой программы. Кроме того, мы не должны забывать, что и немцы ведут работы в этом направлении и в любой момент могут достичь нужных результатов. Всем известно, что именно видный немецкий физик профессор Ган несколько лет назад начал изучение процесса расщепления урана. Несмотря на то что заблаговременно были приняты меры, чтобы убедить бельгийскую компанию сократить запасы оксида урана на территории своей страны (часть из них сейчас находится в Канаде), около восьми тонн попали в руки немцев после того, как они оккупировали эту страну»[17].

Все эти причины побудили британские власти уделить первоочередное внимание созданию своего ядерного оружия. Премьер‑министр и члены комитета начальников штабов сделали соответствующие выводы из письма профессора Линдемана. Куратором проекта от правительства был назначен один из министров Джон Андерсон. 3 сентября комитет начальников штабов принял решение не жалеть на развитие проекта по созданию атомной бомбы ни времени, ни материалов, ни денег, ни труда. Главным администратором проекта стал директор компании «ICI» Уоллас Акерс. Вместе со своим заместителем Майклом Перрином он переехал в выделенное для работы над британской атомной программой здание по адресу: Олд‑Квин‑стрит, дом 16 (с кодовым названием «Директорат по сплавам»). Частью его обязанностей было совместно с уже упомянутым ранее офицером Уэлшем направлять деятельность британской разведки по выявлению хода соответствующих работ в Германии. Одним из первых посетителей здания стал агент из Трондхейма, тот самый, который сначала предупредил о намерении немцев увеличить производство тяжелой воды, а затем выразил подозрения по поводу компании «ICI» и ее повышенного интереса к этому вопросу.

Агентом, как оказалось, был тридцатисемилетний профессор Лейф Тронстад, который несколько лет назад вместе с Йомаром Бруном организовал в компании «Norwegian Hydro» предприятие по производству тяжелой воды. В годы войны Тронстаду было присвоено воинское звание майора; он возглавил секцию IV Верховного командования Норвегии в Лондоне; в круг его обязанностей входили разведка, шпионаж и диверсионные акты. Именно при выполнении своих обязанностей он погиб три года спустя на территории Норвегии.

 

В США была разработана теория выделения в урановом реакторе во время цепной реакции плутония, который может быть использован в качестве ядерного взрывчатого вещества. В марте 1941 года на большом циклотроне в Беркли было получено небольшое количество плутония‑239; в том же месяце сотрудники лаборатории экспериментально доказали, что новый элемент так же легко вступает в реакцию деления, как и уран‑235[18]. В декабре американское правительство еще до того, как в стране был построен первый урановый реактор, приняло решение о создании в Чикаго предприятия по производству плутония. В тот же месяц, когда немецкие военные высказали первые опасения за успех своей атомной программы, в США был создан комитет политических лидеров страны, призванных контролировать ход собственного атомного проекта, во главе с президентом Рузвельтом.

После вступления Америки в войну все исследования урана в мирных целях были прекращены, и страна сосредоточилась на создании атомной бомбы. «Политика, которую разработали и которой твердо придерживались президент Рузвельт и его советники, была проста, – позже писал американский военный министр Стимсон, – а именно: не жалеть усилий для скорейшего успешного создания атомного оружия. Причины такой политики были не менее просты: первые успешные эксперименты в области деления атома состоялись в 1938 году в Германии, и все знали, что немцы продолжали работать в этой области. В 1941 и 1942 годах, – продолжал Стимсон, – все были уверены, что здесь они (немцы) были впереди нас, поэтому было жизненно важным, чтобы они не сумели первыми применить это оружие на поле боя».

 

К концу лета 1941 года немцы добились гораздо меньших успехов в своей атомной программе, чем этого можно было ожидать. Норвежская компания «Norwegian Hydro» получила контракт на поставку в Германию 1500 килограммов тяжелой воды, и в период с 9 октября до конца 1941 года немцы получили первый 361 килограмм этого вещества. К концу того же года германская промышленность произвела более двух с половиной тонн металлического урана, а предприятие во Франкфурте вышло на уровень производства одной тонны урана ежемесячно. И все же, когда профессор Гейзенберг и Допель приступили ко второму эксперименту на урановом реакторе с использованием тяжелой воды, полученной в Норвегии, они вновь воспользовались оксидом урана, применение которого дало столь разочаровавшие результаты в начале года в Берлине, Лейпциге и Гейдельберге. Их реактор вновь представлял собой алюминиевую сферу диаметром 75 сантиметров, в которую поместили 164 килограмма тяжелой воды и 142 килограмма оксида урана, расположив их двумя уровнями вокруг находившегося в центре реактора источника нейтронов. Сам реактор опустили в емкость с водой. Эксперимент проходил в лаборатории Допеля в Лейпциге.

Сначала ученым не удалось зафиксировать заметного увеличения количества нейтронов. Однако, повторив вычисления с учетом поглощения нейтронов алюминием, отделявшим друг от друга слои уранового топлива, они получили цифру, показавшую увеличение числа нейтронов примерно на 100 в секунду. Теперь немецкие ученые, наконец, почувствовали, что находятся на правильном пути. С лета 1941‑го до начала 1942 года они верили, что каждый новый день приближает их к заветному успеху. По мере продолжения серии экспериментов в Лейпциге и получения новых данных эта уверенность крепла; ученые стали говорить о решающем успехе, разбирать и шаг за шагом устранять возможные причины прежних ошибок, которые рождали у них ложные надежды. Такое оживление продолжалось до того, как в конце лета профессор Гейзенберг объявил, что новая конфигурация реактора позволит получить нужные результаты даже с применением в качестве вторичного материала алюминия.

«С сентября 1941 года, – позже заявлял Гейзенберг, – мы увидели перед собой путь, ведущий нас к созданию атомной бомбы».

Это было кульминацией развернувшейся на поле немецкой науки широкой дискуссии. Многие физики начали ощущать беспокойство по поводу того, как соотносится с нормами морали работа над урановой программой. В первую очередь этот вопрос не давал покоя таким стоявшим у истоков проекта физикам, как Гейзенберг, фон Вайцзеккер и Фриц Хоутерман.

В конце октября Гейзенберг отправился в Данию, чтобы встретиться с профессором Нильсом Бором и услышать его мнение насчет гуманности работы, которой он занимался. Как метко заметил профессор П. Йенсен, Гейзенберг, этот «жрец» германской теоретической физики, надеялся получить «отпущение грехов» у самого «папы». Гейзенберг спросил своего датского коллегу, имеет ли физик моральное право работать над проблемой создания атомной бомбы во время войны. Бор в свою очередь ответил на вопрос вопросом: является ли, по мнению Гейзенберга, использование процесса деления атомного ядра в военных целях возможным в обозримом будущем? Гейзенберг печально ответил, что теперь считает это возможным. Затем Гейзенберг поинтересовался мнением Бора относительно возможности отказа всеми учеными от создания в своих странах атомных бомб при условии, что и немецкие физики впредь воздержатся от проведения таких работ. К сожалению, он не смог сформулировать свое предложение достаточно четко.

К невыразимому изумлению Гейзенберга, Бор ответил, что проводившиеся учеными‑физиками всех стран работы в рамках военных программ неизбежны и даже своевременны. Он отказался участвовать в обсуждении предложения немецкого ученого. Очевидно, Бор подозревал немцев в желании выиграть время и преодолеть превосходство Америки в области ядерной физики, о котором не раз заявляли многочисленные ученые – эмигранты из Германии. В целом беседа оставила у Бора чувство шока и уверенности в том, что Германия стоит на пороге создания урановой бомбы.

 







Date: 2015-09-22; view: 310; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.024 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию