Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Примечание. Вообще говоря, графы бывают двух различных типов





 

Вообще говоря, графы бывают двух различных типов. Рассмотренное выше определение относится к неориентированному графу, т. е. к такому графу, у которого связывающие вершины ребра не имеют направления или ориентации. Кроме неориентированных графов существуют ориентированные графы, которые определяются следующим образом.

Ориентированный граф также задается в виде двух множеств G=(V, E), где V={v1, v2,…vn} – множество вершин графа, а E={е1, е2,…еm] – множество дуг графа. Натуральное число n определяет общее количество вершин конкретного графа, а натуральное число m – общее количество дуг графа. При этом каждая дуга еk=Е ориентированного графа G имеет свое начало– некоторую единственную вершину vi=V и конец – некоторую единственную вершину vj=V, В отличие от ребра, дуга всегда имеет обозначение со стрелочкой, которая направлена к конечной вершине дуги. Множество дуг ставит в соответствие каждому ориентированному графу некоторое бинарное отношение PG, состоящее из всех пар вида ‹vi, vj›, где vi, vj=V. При этом пара ‹vi, vj› принадлежит отношению PG в том и только в том случае, если вершины vi и vj соединяются в графе G некоторой дугой еk=Е с началом в вершине viи концом в вершине vj.

Ниже представлены два примера конкретных графов (рис. 2.4). При этом первый из них (рис. 2.4, а) является неориентированным графом, а второй (рис. 2.4, б) – ориентированным графом. Как нетрудно заметить, для неориентированного графа ребро е1 соединяет вершины v1 и v2, ребро е2 – вершины v1 и v3, а ребро e3 – вершины v2 и v3 и т. д. Последнее ребро, e8, соединяет вершины v4 и v5, тем самым задается описание графа в целом. Других ребер данный граф не содержит, как не содержит других вершин, не изображенных на рисунке. Так, хотя ребра е6 и e7 визуально пересекаются, но точка их пересечения не является вершиной графа.

Для ориентированного графа (рис. 2.4, б) ситуация несколько иная. А именно, вершины v1 и v2 соединены дугой е1, для которой вершина v2 является началом дуги, а вершина v1 – концом этой дуги. Далее дуга е2 соединяет вершины v1 и v4, при этом началом дуги e2 является вершина v1, а концом – вершина v4.

Рис. 2.4. Примеры неориентированного (а) и ориентированного (б) графов

Графы широко применяются для представления различной информации о структуре систем и процессов. Примерами подобных графических моделей могут служить: схемы автомобильных дорог, соединяющих отдельные населенные пункты; схемы телекоммуникаций, используемых для передачи информации между отдельными узлами; схемы программ, на которых указываются варианты ветвления вычислительного процесса. Общим для всех конкретных подобных моделей является возможность представления информации в графическом виде в форме соответствующего графа. При этом отдельные модели, как правило, обладают дополнительной семантикой и специальными обозначениями, характерными для той или иной предметной области.

Важными понятиями теории графов являются понятия маршрута и пути, которые ассоциируются с последовательным перемещением от вершины к вершине по соединяющим их ребрам или дугам. Для неориентированного графа маршрут определяется как конечная или бесконечная упорядоченная последовательность ребер S=‹, esl, es2,… esk››, таких, что каждые два соседних ребра имеют общую вершину. Нас будут интересовать только конечные маршруты S=‹es1, es2,… esk›, т. е. такие маршруты, которые состоят из конечного числа ребер. При этом ребро esl принято считать началом маршрута S, а ребро esk – концом маршрута S. Для ориентированного графа соответствующая последовательность дуг S=‹es1, es2,… esk› называется ориентированным маршрутом, если две соседние дуги имеют общую вершину, которая является концом предыдущей и началом последующей дуги.

Примерами маршрутов для неориентированного графа (рис. 2.4, а) являются последовательности ребер: S1=‹e1, e2 e5, e8›, S2=‹e1, e2, е3, e1›, S3=‹e3, e5, e8›. Если в маршруте не повторяются ни ребра, ни вершины, как в случае S1 и S3, то такой неориентированный маршрут называется простой цепью.

Примерами ориентированных маршрутов для графа (рис. 2.4, б) являются такие последовательности дуг: S1=‹e2, e8, e5›, S2=‹e3, e7, e6›, S3=‹e8, e3, e7, e4, e8›. Если в ориентированном маршруте не повторяются ни ребра, ни вершины, как в случае S1 и S2, то такой ориентированный маршрут называется путем. Последнее понятие также иногда применяется для обозначения простой цепи в неориентированных графах и для определения специального класса графов, так называемых деревьев. В общем случае деревья служат для графического представления иерархических структур или иерархий, занимающих важное место в ООАП.

Деревом в теории графов называется такой граф D=‹V, E›, между любыми двумя вершинами которого существует единственная простая цепь, т. е. неориентированный маршрут, у которого вершины и ребра не повторяются. Применительно к ориентированным графам соответствующее определение является более сложным, поскольку основывается на выделении некоторой специальной вершины v0, которая получила специальное название корневой вершины или просто – корня. В этом случае ориентированный граф D=‹V, Е› называется ориентированным деревом или сокращенно – деревом, если между корнем дерева v0 и любой другой вершиной существует единственный путь, берущий начало в v0. Ниже представлены два примера деревьев: неориентированного дерева (рис. 2.5, а) и ориентированного дерева (рис. 2.5, б).

В случае неориентированного дерева (рис. 2.5, а) любая из вершин графа может быть выбрана в качестве корня. Подобный выбор определяется специфическими особенностями решаемой задачи. Так, вершина v1 может рассматриваться в качестве корня неориентированного дерева, поскольку между v1 и любой другой вершиной дерева всегда существует единственная простая цепь по определению (или, что менее строго, единственный неориентированный путь).

Рис. 2.5. Примеры неориентированного (а) и ориентированного (б) деревьев

Для случая ориентированного дерева (рис. 2.5, б) вершина v2 является единственным его корнем и имеет специальное обозначение v0. Единственность корня в ориентированном дереве следует из того факта, что ориентированный путь всегда имеет единственную вершину, которая является его началом. Поскольку в теории графов имеет значение только наличие или отсутствие связей между отдельными вершинами, деревья, как правило, изображаются специальным образом в виде иерархической структуры. При этом корень дерева изображается самой верхней вершиной в данной иерархии. Далее следуют вершины уровня 1, которые связаны с корнем одним ребром или одной дугой. Следующий уровень будет иметь номер 2, поскольку соответствующие вершины должны быть связаны с корнем двумя последовательными ребрами или дугами. Процесс построения иерархического дерева продолжается до тех пор, пока не будут рассмотрены вершины, которые не связаны с другими вершинами, кроме рассмотренных, или из которых не выходит ни одна дуга. В этом случае самые нижние вершины иногда называют листьями дерева. Важно иметь в виду, что в теории графов дерево «растет» вниз, а не вверх, как в реальной жизни.

Изображенные выше деревья (рис. 2.5) можно преобразовать к виду иерархий. Например, неориентированное дерево (рис. 2.5, а) может быть представлено в виде иерархического дерева следующим образом (рис. 2.6, а). В этом случае корнем иерархии является вершина v1. Ориентированное дерево (рис. 2.5, б) также может быть изображено в форме иерархического дерева (рис. 2.6, б), однако такое представление является единственным.

В первом случае (рис. 2.6, а) вершина v2 образует первый уровень иерархии, вершины v4 и v3 – второй уровень иерархии, вершина v5 – третий и последний уровень иерархии. При этом листьями данного неориентированного дерева являются вершины v3 и v5. Во втором случае (рис. 2.6, б) вершины v1 и v5 образуют первый уровень иерархии, вершины v4 и v6 – второй уровень иерархии, вершина v3 – третий и последний уровень иерархии. Листьями данного ориентированного дерева являются вершины v3 и v6.

Рис. 2.6. Иерархические схемы неориентированного дерева (а) и ориентированного дерева (б)

В заключение следует заметить, что в теории графов разработаны различные методы анализа отдельных классов графов и алгоритмы построения специальных графических объектов, рассмотрение которых выходит за рамки настоящей книги. Для получения дополнительной информации по данной теме можно рекомендовать обратиться к специальной литературе по теории графов, где эти вопросы рассмотрены более подробно. В дальнейшем нас будет интересовать отдельное направление в теории графов, которое связано с явным включением семантики в традиционные обозначения и получившее самостоятельное развитие в форме семантических сетей.

 

Date: 2015-09-17; view: 407; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию